腿足机器人之十二-VLA视觉语言动作模型

腿足机器人之十二- manipulation


在上一章提到腿足机器人之十一- 深度强化学习,我们提到了腿足机器人的运动mobility和操作manipulation,前面的博客内容都是以mobility为主,2025年2月20日国外的 Figure公司发布了了Helix(A Vision-Language-Action Model for Generalist Humanoid Control)。

在这里插入图片描述
Figure的Helix report并没有透露过渡的技术细节,但是从上面的结构大致可以看出来在推理时的框架基本是:

# 伪代码示例:VLA动作生成流程
visual_feat = vision_encoder(rgb_image)          # 视觉特征提取
text_feat = language_model(instruction)          # 语言指令编码
fused_feat = cross_attention(visual_feat, text_feat)  # 多模态融合
action = policy_network(fused_feat, sensor_data)  # 生成关节动作
execute_action(action)

这么做的好处是增强了能力泛化,虽然helix公布时基于500小时训练数据的结构,但实际上VLA主要用于解决 复杂环境下的自主导航、任务理解与动态动作生成 的难题,其核心是通过多模态感知与推理,实现自然语言指令到物理动作的端到端映射。

VLA技术简介

传统控制方法无法直接理解人类模糊或复杂的指令(如 “去二楼查看是否有异常”),需依赖固定脚本,有了VLA,就可以通过视觉感知环境语义(如识别 “楼梯” 或 “坑洞”),结合语言指令(如 “上楼” 或 “绕过障碍”),生成适应地形的步态和路径规划。

  1. 多模态感知与对齐
  • 视觉编码器:
    使用 ViT 或 ResNet 提取环境特征(如地形高度图、障碍物位置)。
    示例:从 RGB-D 图像中分割出可通行区域与危险区域(如波士顿动力 Spot 的视觉导航模块)。
  • 语言编码器:
    基于 LLM(如 LLaMA、GPT) 解析指令语义(如 “绕过前方的箱子” → 目标点与避障逻辑)。
  • 模态对齐:
    通过 对比学习 或 跨模态注意力(如 CLIP 风格预训练),对齐视觉特征与语言指令的语义空间。
  1. 动作生成与控制
  • 强化学习(RL)策略:
    将多模态特征输入策略网络,输出关节力矩或步态参数(如 MIT Cheetah 的 RL 控制框架)。
    奖励函数设计:结合任务目标(如到达终点、开门、倒茶)与安全约束(如躯干平衡、能耗最小)。
  • 分层控制架构:
    高层规划:根据语言指令生成路径点(如 “去 A 点巡检” → 全局路径)。
    底层控制器:基于视觉感知实时调整步态(如 ANYmal 的模型预测控制)。
  1. 动态适应与鲁棒性增强
  • 世界模型(World Model):
    预测环境动态(如地面打滑概率),并提前规划安全动作(如 DeepMind 的 DreamerV3 在四足机器人中的应用)。
  • 在线学习与微调:
    在部署中持续更新模型参数,适应新场景(如 Meta 的 Adaptive Agent)。
  1. 挑战与未来方向
  • 数据效率:需大量多模态机器人数据训练,仿真与真实数据迁移是关键。
  • 安全性与可解释性:避免危险动作生成,确保决策过程透明(如可视化注意力机制)。
  • 端到端优化:联合优化视觉 - 语言对齐与动作控制,避免模块间误差累积。

开源的VLA

Helix的System2模型是7B和openVLA的模型也是7B,看起来二者是有些关联的。

这里先临时做个框架性的介绍,后面再详细看具体细节,首先Vision-Language-Action (VLA) model 其实这两年都有研究,比较有影响力的paper是OpenVLA: An Open-Source Vision-Language-Action Model,其开源的github地址
在这里插入图片描述
该模型想解决

### VLA机器人控制中的作用 视觉-语言-动作(Vision-Language-Action, VLA模型是一种融合了计算机视觉、自然语言处理和机器人学的技术框架,其核心目标是使机器人能够理解人类的语言指令并将其转化为具体的物理行为。VLA 技术的发展显著提升了机器人的灵活性和适应能力。 #### 1. **VLA 的基本功能** VLA 模型通过结合预训练的视觉语言模型 (Visual Language Model, VLM) 和特定于机器人动作模块,实现了从感知到行动的端到端映射[^2]。这种架构允许机器人接收自然语言输入,并根据上下文生成相应的动作序列。例如,在 Helix 控制技术中,VLA 被用来实现对整个上半身的高度协调控制,包括手腕、躯干、头部甚至单个手指的动作[^1]。 #### 2. **VLA机器人控制中的具体应用** ##### (1)**通用任务执行** 借助 VLA 模型机器人可以完成多种复杂任务而无需针对每种任务重新设计控制系统。例如,Pi0 使用了一个跨体现的数据集来学习不同类型的灵巧操作技能,并通过添加一个专门的动作专家模块来优化这些技能的表现[^3]。这使得 Pi0 可以轻松应对诸如抓取物体、打开门或堆叠物品等多样化场景。 ##### (2)**基于提示的任务推理** VLA 不仅限于简单的命令跟随;它还支持更高级别的认知活动,比如基于提示的任务推理。这意味着当用户提供一段描述性的文字说明时,机器人可以根据自己的经验库推断出如何完成这项工作。这种方法特别适合那些未被明确编程过的新型挑战情境。 ##### (3)**动态环境下的实时响应** 由于采用了流匹配算法生成连续平滑的动作轨迹,即使面对不断变化的情况,装备有先进 VLA 系统的设备也能保持稳定高效的性能表现。这对于需要快速反应的应用场合尤为重要,如搜救作业或是生产线上的质量检测环节。 #### 3. **未来发展方向与潜力** 随着研究深入和技术进步,预计未来的 VLA 将更加注重以下几个方面: - 提高泛化能力和鲁棒性; - 减少对于大量标注数据依赖程度的同时提升效率; - 推动多模态交互方式创新以便更好地服务于人类社会需求。 ```python def vla_robot_control(task_description): """ Simulates a basic function of how an advanced robot might use VLA to interpret and execute tasks. Args: task_description (str): A natural language string describing the desired action. Returns: str: Feedback indicating success or failure after attempting execution based on input description. """ vl_model_output = process_language_and_vision_data(task_description) continuous_actions = generate_smooth_action_sequence(vl_model_output) try_execute(continuous_actions) return "Task executed successfully!" if verify_outcome() else "Failed to perform requested operation." ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shichaog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值