本文探讨了人类偏好是否有助于提高基于人工智能(AI)的决策支持,以皮肤癌诊断为例。我们利用专家制定的表格,平衡了各种诊断错误的利益和危害,通过强化学习(RL)应用了非均匀的奖励和惩罚。与监督学习(SL)模型相比,RL模型将黑色素瘤的敏感性从61.4%提高到79.5%,将基底细胞癌的敏感性从79.4%提高到87.1%。RL模型还降低了AI的过度自信,同时保持了准确性。RL模型提高了皮肤科医生的正确诊断率12.0%,将最佳管理决策的比例从57.4%提高到65.3%。我们进一步证明了,在不同的临床场景中,基于奖励的RL模型和基于阈值的SL模型都优于简单的SL模型。我们的研究表明,将人类偏好纳入基于图像的诊断算法是可行的。
文章的创新之处:
-
利用强化学习优化人工智能辅助诊断:文章提出了一种基于奖励表的强化学习模型,可以根据专家的偏好调整人工智能对皮肤癌诊断的预测,提高了对黑色素瘤和基底细胞癌的敏感性,同时降低了人工智能的过度自信。
-
考虑了不同类型的皮肤癌的风险收益平衡:文章根据不同类型的皮肤癌的潜在危害和治疗方案,设计了不同的奖励和惩罚,使得人工智能能够在多分类问题中做出更合理的决策,例如对于黑色素瘤和基底细胞癌,应该优先选择切除,而对于表皮内癌,可以选择局部治疗。
-
在复杂的临床场景中表现出优越性:文章通过三种不同的临床场景,比较了奖励调整的强化学习模型、阈值调整的监督学习模型和简单的监督学习模型的表现,发现强化学习模型能够在提高对恶性病变的识别率的同时,减少对良性病变的过度干预,尤其是在需要考虑患者个体情况的场景中,强化学习模型能够做出更符合专家实践的管理策略。
大语言模型(LLM)|ChatGPT相关文章(以下点击可阅读):
年末福利:科研GPT限时免费使用,支持GPT3.5、GPT4-32K、SparK模型等
基于GPT-4的Coscientist成功完成复杂化学实验,布洛芬配方轻松拿捏,复现诺贝尔化学奖
AI超大模型!一个午休就能读完20万篇论文、提取信息完成生物数据库更新!
两篇Nature:AI实现新材料的快速合成!17天独自创造41种新材料
顶刊 | 解放军总医院:基于生成对抗网络的主动脉和颈动脉非造影 CT 血管造影
1个小时利用ChatGPT完成神经外科领域的完全虚构的论文!AI写论文的逼真程度令人震惊
以色列一对师生借助ChatGPT,1小时完成1篇论文糖尿病论文
利用ChatGPT,这位医生4个月内完成16篇论文,且已发表5篇!医生科研开启加速模式!
AI论文 | ChatGPT在医学中的应用概述:应用、优势、局限性、未来前景和伦理思辨
AI论文 | 从临床和科研场景分析ChatGPT在医疗健康领域的应用可行性
GPT辅助论文降重教程,100%降至13%(实用指令,赶紧收藏)
2023年国自然医学科学学部人工智能及大模型相关课题项目汇总
科研之心,致力于探索AI大模型与科研结合。科研之心为您提供最新的AI资讯、最实用的AI工具、最深入的AI分析,帮助您在科学研究中发掘AI的无限潜力。
欢迎关注,保持交流!