MedPath:药物推荐条件生成网络,智能药物推荐决策

本文介绍了一种新的药物推荐模型COGNet,它利用编码器-解码器结构,结合历史诊断和药物建议,以生成适应患者当前情况的药物组合。实验结果显示,COGNet在MIMIC-III数据集上表现出色,优于现有方法,尤其在处理复杂病例和药物重复性方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片

论文题目《Conditional Generation Net for Medication Recommendation》(《药物推荐的条件生成网络》)

论文摘要:

药物推荐旨在根据患者的诊断提供适当的药物组合,这是临床的一项关键任务。目前,推荐是由医生手动进行的。但是,对于复杂的病例,例如同时患有多种疾病的患者,即使是经验丰富的医生也很难提出体贴的建议。这促使自动药物推荐的出现,它可以帮助治疗诊断的疾病,而不会造成有害的药物-药物相互作用。由于临床价值,药物推荐引起了越来越多的研究兴趣。

现有工作主要将药物推荐制定为多标签分类任务来预测一组药物。然后在预测每种药物时,所提出的模型决定是从以前的建议中复制一种药物,还是预测一种新的药物。这个过程与人类医生的决策过程非常相似。我们在公共 MIMIC 数据集上验证了所提出的模型,实验结果表明,所提出的模型可以优于最先进的方法。提出的模型首先检索他或她的历史诊断和药物建议,并挖掘它们与当前诊断的关系。然后在预测每种药物时,所提出的模型决定是从以前的建议中复制一种药物,还是预测一种新的药物。这个过程与人类医生的决策过程非常相似。我们在公共 MIMIC 数据集上验证了所提出的模型,实验结果表明,所提出的模型可以优于最先进的方法。提出的模型首先检索他或她的历史诊断和药物建议,并挖掘它们与当前诊断的关系。然后在预测每种药物时,所提出的模型决定是从以前的建议中复制一种药物,还是预测一种新的药物。这个过程与人类医生的决策过程非常相似。我们在公共 MIMIC 数据集上验证了所提出的模型,实验结果表明,所提出的模型可以优于最先进的方法。

论文精读:

1、引言

药物推荐旨在提供一套药物来治疗患者的一系列诊断疾病。目前药物推荐主要由医生根据他们的专业知识和经验进行。然而,许多患者同时被诊断出患有多种疾病。为了进行周到的药物推荐,一方面,医生需要为每种疾病选择合适的药物;另一方面,医生需要避免所选药物之间的有害药物相互作用(DDI)。因此,对于复杂的病例,药物推荐对于经验丰富的医生来说是耗时的,而对于缺乏经验的医生来说则容易出错。为了解决这个问题,该文敦促使用可以帮助医生做出决策的自动药物推荐。 

现有工作没有明确地为同一患者的药物推荐之间的关系建模。然而,在临床实践中,针对相同患者的建议是密切相关的。例如,对于慢性病患者来说,他们可能一直使用同一种药物。对MIMIC-III数据集进行了统计分析,对于每次就诊,计算历史上出现的药物的比例,以及当前药物和过去药物之间的Jaccard。在大多数就诊中,很大一部分处方药以前都被推荐过。受此启发,该文从药物层面重新思考如何利用历史信息。这里的挑战是如何准确地确定一种历史药物目前是否仍然有效。

针对上述问题提出了一种基于编码器-解码器的生成网络,以顺序的方式生成合适的药物,称为条件生成网络(COGNet)。所提出的COGNet由基本模型和复制模块组成。基本模型仅根据患者当前就诊的健康状况进行推荐;复制模块在建模中引入历史访问的信息。与基本模型不同的是,在生成每种药物时,复制模块决定是从历史推荐中复制药物还是预测新的药物。在公共数据集上的实验证明了所提出的模型的有效性。

2、模型

图片

(1) 基本模型模块:基本模型中,仅根据患者当前就诊的健康状况推荐药物组合。这个基本模型是一个编码器-解码器生成模型。它由四个模块组成:诊断编码器、程序编码器、药物图编码器和药物组合编码器。

(2) 复制模块:设计了一个新的复制模块来扩展基本模型,该模块首先比较当前就诊和历史就诊的健康状况,然后根据状况变化复制可重复使用的药物,为当前就诊开具处方。

3 实验

数据集:Ph

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明哲AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值