论文题目《Conditional Generation Net for Medication Recommendation》(《药物推荐的条件生成网络》)
论文摘要:
药物推荐旨在根据患者的诊断提供适当的药物组合,这是临床的一项关键任务。目前,推荐是由医生手动进行的。但是,对于复杂的病例,例如同时患有多种疾病的患者,即使是经验丰富的医生也很难提出体贴的建议。这促使自动药物推荐的出现,它可以帮助治疗诊断的疾病,而不会造成有害的药物-药物相互作用。由于临床价值,药物推荐引起了越来越多的研究兴趣。
现有工作主要将药物推荐制定为多标签分类任务来预测一组药物。然后在预测每种药物时,所提出的模型决定是从以前的建议中复制一种药物,还是预测一种新的药物。这个过程与人类医生的决策过程非常相似。我们在公共 MIMIC 数据集上验证了所提出的模型,实验结果表明,所提出的模型可以优于最先进的方法。提出的模型首先检索他或她的历史诊断和药物建议,并挖掘它们与当前诊断的关系。然后在预测每种药物时,所提出的模型决定是从以前的建议中复制一种药物,还是预测一种新的药物。这个过程与人类医生的决策过程非常相似。我们在公共 MIMIC 数据集上验证了所提出的模型,实验结果表明,所提出的模型可以优于最先进的方法。提出的模型首先检索他或她的历史诊断和药物建议,并挖掘它们与当前诊断的关系。然后在预测每种药物时,所提出的模型决定是从以前的建议中复制一种药物,还是预测一种新的药物。这个过程与人类医生的决策过程非常相似。我们在公共 MIMIC 数据集上验证了所提出的模型,实验结果表明,所提出的模型可以优于最先进的方法。
论文精读:
1、引言
药物推荐旨在提供一套药物来治疗患者的一系列诊断疾病。目前药物推荐主要由医生根据他们的专业知识和经验进行。然而,许多患者同时被诊断出患有多种疾病。为了进行周到的药物推荐,一方面,医生需要为每种疾病选择合适的药物;另一方面,医生需要避免所选药物之间的有害药物相互作用(DDI)。因此,对于复杂的病例,药物推荐对于经验丰富的医生来说是耗时的,而对于缺乏经验的医生来说则容易出错。为了解决这个问题,该文敦促使用可以帮助医生做出决策的自动药物推荐。
现有工作没有明确地为同一患者的药物推荐之间的关系建模。然而,在临床实践中,针对相同患者的建议是密切相关的。例如,对于慢性病患者来说,他们可能一直使用同一种药物。对MIMIC-III数据集进行了统计分析,对于每次就诊,计算历史上出现的药物的比例,以及当前药物和过去药物之间的Jaccard。在大多数就诊中,很大一部分处方药以前都被推荐过。受此启发,该文从药物层面重新思考如何利用历史信息。这里的挑战是如何准确地确定一种历史药物目前是否仍然有效。
针对上述问题提出了一种基于编码器-解码器的生成网络,以顺序的方式生成合适的药物,称为条件生成网络(COGNet)。所提出的COGNet由基本模型和复制模块组成。基本模型仅根据患者当前就诊的健康状况进行推荐;复制模块在建模中引入历史访问的信息。与基本模型不同的是,在生成每种药物时,复制模块决定是从历史推荐中复制药物还是预测新的药物。在公共数据集上的实验证明了所提出的模型的有效性。
2、模型
(1) 基本模型模块:基本模型中,仅根据患者当前就诊的健康状况推荐药物组合。这个基本模型是一个编码器-解码器生成模型。它由四个模块组成:诊断编码器、程序编码器、药物图编码器和药物组合编码器。
(2) 复制模块:设计了一个新的复制模块来扩展基本模型,该模块首先比较当前就诊和历史就诊的健康状况,然后根据状况变化复制可重复使用的药物,为当前就诊开具处方。
3 实验
数据集:Ph