AI与药学 | 大模型赋能用药处方:迈向更清晰、个性化、无偏见的用药指导新时代

导语: 在人工智能浪潮席卷全球的今天,大语言模型(LLMs)以前所未有的速度改变着各个行业的面貌,医疗健康领域也不例外。近日,一项发表在《Mayo Clinic Proceedings: Digital Health》上的前沿研究《Evaluating Large Language Model–Supported Instructions for Medication Use: First Steps Toward a Comprehensive Model》,聚焦于如何利用 LLMs 这一强大的工具,优化电子处方中的用药指导,为构建更加智能、人性化的医疗服务体系描绘了新的蓝图。(关注公众号“赛文AI药学”,获取更多AI与药学的内容)

一、电子处方:机遇与挑战并存

电子处方系统作为医疗信息化的重要组成部分,通过将处方信息数字化并直接传输至药房,显著提升了医疗效率和安全性。相比传统的手写处方,电子处方具有诸多优势:

  • 清晰可读: 消除了手写字迹潦草、难以辨认的问题,避免了因处方信息不清导致的用药错误。

  • 规范标准: 遵循统一的格式和标准,确保处方信息的完整性和准确性,便于药师审核和调配。

  • 流程优化: 简化了处方开具、审核、调配和发放的流程,节省了医患双方的时间。

  • 数据互通: 促进了医疗机构之间的数据共享和互联互通,为临床决策支持、药物警戒等提供了数据基础。

然而,尽管电子处方带来了诸多益处,患者用药依从性和安全性仍然面临严峻挑战。研究表明,不清晰、难理解的用药指导是导致患者用药错误、不良事件发生的重要原因之一。传统的电子处方往往缺乏个性化的指导,难以满足不同患者的理解需求,这主要体现在以下几个方面:

  • 千篇一律: 用药指导内容通常是固定的模板,缺乏针对患者个体情况的调整,例如年龄、教育程度、文化背景等。

  • 专业术语: 充斥着医学专业术语,对于非医学专业的患者来说难以理解。

  • 信息过载: 有时包含过多不必要的信息,反而干扰了患者对关键信息的获取。

  • 缺乏人文关怀: 语言生硬、冷冰冰,缺乏人文关怀,不利于医患之间的沟通和信任。

因此,如何提升电子处方中用药指导的清晰度、个性化和人文关怀,成为亟待解决的问题。

二、LLMs:破局之匙

LLMs 作为一种基于深度学习的自然语言处理技术,拥有强大的文本生成、理解和推理能力,为解决上述问题提供了新的可能性。LLMs 可以通过学习海量的医学文本数据,理解复杂的医学知识和临床实践指南,并根据患者的个体特征和处方信息,生成个性化、易于理解的用药指导。

三、巴西研究团队的创新探索

这项由巴西米纳斯吉拉斯联邦大学领导的研究团队,对 LLMs 在增强电子处方用药指导方面的应用进行了开创性的探索。他们的研究主要包括以下几个步骤:

1. 构建用药指导原则: 研究团队首先基于现有的医学指南和最佳实践,制定了一套以患者为中心的用药指导原则,强调以下几个关键要素:

  • 充分性: 用药指导必须包含所有必要的信息,例如用法用量、用药时间、注意事项等。

  • 可接受性: 语言简洁明了,避免使用专业术语和复杂句式,易于患者理解和接受。

  • 个性化: 根据患者的年龄、教育程度、文化背景等个体特征,调整用药指导的内容和表达方式。

  • 无偏见: 消除任何形式的偏见,例如性别、种族、年龄等,确保用药指导的公平性和公正性。

2. 创建模拟数据集: 为了模拟真实的临床场景,研究团队构建了一个包含 104 个门诊病例的数据集,涵盖了 99 种药物、14 种给药途径、72 种治疗适应症以及不同年龄、性别、教育程度的患者信息。这些病例数据均按照巴西国家电子处方标准进行构建。

3. 设计精巧的提示词: 提示词 (Prompt) 是引导 LLMs 生成特定输出的关键。研究团队精心设计了三个不同的提示词,分别输入到闭源 LLM 模型 GPT-4 中,以测试其在不同指令下的表现:

  • 提示词 1 (通用指令): "基于此药物 [药物名称] 及其处方用法 [用法用量],生成一段指导巴西患者如何服用该药物的文本。"

  • 提示词 2 (增强内容和个性化): 在提示词 1 的基础上,增加了对用药时间、服用方式(空腹、餐后等)、使用工具(勺子、量杯等)的明确说明,并要求根据患者的教育程度调整语言风格,使用祈使句,并在开头使用患者的名字以增强个性化。

  • 提示词 3 (消除偏见): 在提示词 2 的基础上,进一步要求模型删除任何可能存在的隐性和显性偏见,确保用药指导的公平性和包容性。例如使用中性词语来指代医生和药剂师,避免出现职业性别刻板印象的情况。

此外,为了评估开源 LLMs 的性能,研究团队还将提示词 3 应用于开源模型 Llama 3 (Meta-Llama 3 8B)。

4. 评估与分析: 研究采用自动评估指标和人工评估相结合的方式,对 LLMs 生成的用药指导进行全面评估。

  • 自动评估: 使用词嵌入技术,计算 LLMs 生成的文本与参考文本之间的语义相似度。

  • 人工评估: 由三位具有丰富临床经验的医疗专业人员,根据预先设定的标准,对 LLMs 生成的文本进行充分性、可接受性、个性化评估,并对错误类型进行分类。错误类型包括:指导性错误、结论性错误、信息遗漏、非医学性错误、缺乏科学依据、与任务不符、幻觉等。

四、研究结果:LLMs 展现巨大潜力

研究结果表明,LLMs 在生成个性化、易于理解的用药指导方面展现出巨大的潜力:

  • 提示词优化的显著效果: 随着提示词的不断优化,GPT-4 生成的用药指导质量显著提升。在充分性方面,提示词 3 的表现明显优于提示词 1 和 2;在可接受性方面,94.3% 的文本在提示词 3 下达到了完全或部分可接受的标准;在个性化方面,提示词 2 和 3 都获得了专家的高度认可。

  • 开源模型的优异表现: GPT-4 和 Llama 3 在充分性方面表现相当,但在具体错误类型上有所差异。Llama 3 在“与任务不符”这一类型的错误上表现更好,但在“幻觉”错误上略逊于 GPT-4。

  • 偏见消除的有效性: GPT-4 在提示词 1 和 2 下存在性别偏见,例如在葡萄牙语中倾向于使用阳性名词指代“医生”和“药剂师”。而在提示词 3 的引导下,GPT-4 成功消除了这些偏见。Llama 3 的输出未发现性别偏见。

  • 客观相似度的局限性: 虽然提示词 3 生成的文本与参考文本的相似度最高,但高相似度并不等同于用药指导的正确性。例如,对于一位孕妇服用螺旋霉素的病例,提示词 1 生成的文本与参考文本的相似度高达 94.75%,但专家评估认为该文本部分不充分,并存在多种错误。

五、研究的深远意义:推动医疗服务智能化升级

这项研究的意义不仅在于证明了 LLMs 在生成个性化用药指导方面的可行性,更在于为电子处方系统的改进和医疗服务的智能化升级提供了新的思路和方向:

  • 提升医患沟通效率和质量: LLMs 生成的个性化、易于理解的用药指导,可以帮助患者更好地理解和掌握用药方法,减少因信息不对称导致的用药错误,提高用药依从性和安全性。

  • 减轻医务人员工作负担: LLMs 可以自动生成用药指导,减轻医务人员重复性劳动,使他们能够将更多的时间和精力投入到更需要专业判断和人文关怀的临床工作中。

  • 促进医疗公平性和可及性: LLMs 可以根据患者的个体特征,例如教育程度、文化背景等,生成定制化的用药指导,帮助弱势群体更好地理解和使用药物,促进医疗公平性和可及性。

  • 推动医疗信息化建设: 这项研究为电子处方系统的智能化升级提供了新的方向,有助于推动医疗信息化建设,构建更加智能、高效、人性化的医疗服务体系。

  • 开源模型的应用前景: 开源模型 Llama 3 的优异表现,为未来构建兼顾隐私保护和应用效果的医疗人工智能系统提供了可能。开源模型可以部署在本地服务器上,避免将敏感的患者信息上传到云端,更好地保护患者隐私。

六、未来的挑战与展望:任重而道远

尽管这项研究取得了令人鼓舞的成果,但 LLMs 在电子处方用药指导方面的应用仍处于起步阶段,未来还面临着诸多挑战:

  • 数据集的扩展: 目前的研究数据集规模有限,且主要基于模拟场景,未来需要扩展数据集,纳入更多真实世界的处方数据,并覆盖更广泛的药物、疾病和人群,以提升模型的泛化能力和鲁棒性。

  • 复杂场景的处理: 目前的研究主要针对单一药物的用药指导,未来需要探索如何处理多药联用、剂量调整、疗程管理、对症用药等复杂场景。

  • 文化适应性: 需要针对不同文化背景的患者,开发更加精细化的用药指导模型,例如考虑不同地区的用药习惯、文化禁忌等。

  • 伦理和安全: 需要制定严格的伦理和安全规范,确保 LLMs 生成的用药指导准确、可靠、无偏见,避免误导患者或造成其他不良后果。

  • 人机协作: LLMs 生成的用药指导不能完全取代医务人员的专业判断,未来需要探索如何实现人机协作,将 LLMs 的优势与医务人员的经验相结合,为患者提供最佳的用药指导。

  • 技术优化: 需要进一步优化模型和算法,例如利用检索增强生成技术 (RAG) 提升模型的知识获取能力,以及微调技术提升模型在特定任务上的表现。

结语: LLMs 的应用为电子处方带来了革命性的机遇,有望彻底改变传统的用药指导模式。虽然目前仍面临诸多挑战,但随着技术的不断进步和研究的不断深入,我们有理由相信,在不久的将来,LLMs 将成为医务人员的得力助手,为患者提供更加清晰、个性化、无偏见的用药指导,为构建更加智能、高效、人性化的医疗服务体系贡献力量。

关键词: 大语言模型 (LLMs),电子处方,用药指导,个性化,人工智能,医疗信息学,提示工程,GPT-4,Llama 3,药师,人机协作,检索增强生成(RAG),微调,伦理,安全性,大模型

往期内容荐读:

数智药学的崛起:人工智能赋能药学新未来

数智药师:AI时代药学服务的引领者

智能决策助力药物安全:大模型在临床处方审核中的突破

数字人技术在药学服务中的应用

药师必备:掌握AI,引领药学服务新时代

LEADER - 大模型蒸馏的药物推荐模型

李新刚:《医院药学的创新引擎:ChatGPT的应用与思考》

ChatGPT 在临床药学中的有效性以及人工智能在药物治疗管理中的作用

评估大语言模型在药物基因组学问答任务中的表现:PGxQA

DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测

生成式AI:药学科普的新引擎

诺奖得主David Baker最新Science论文:药学+AI领域迎来新机遇!

AI与药学:ChatGPT与临床培训——药学博士(Pharm-D)学生的看法、担忧和实践

人工智能大模型在用药处方审核的应用潜力:一项跨 12 个临床专科的前瞻性研究

生成式人工智能在中医药学教育中的应用与挑战

PharmacyGPT: AI赋能精准ICU药物治疗

数智药学:信息药师向AI药师的进化

AI用于研究药物扩大适应症:大模型架起药物分子结构与适应症的桥梁

AI与药学:DrugGPT助力减少英国每年2.37亿次用药错误

AI时代下的家庭药师

AI与药学:用药咨询场景的检索增强AI大模型

AI与药学:生成式人工智能如何帮助构建患者药品说明书?

AI与药学:ChatGPT在抗感染治疗中的应用与挑战

AI与药学:大语言模型赋能药物推荐

CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究

AI与药学|DAPSNet:基于双重注意力机制和患者相似性的药物推荐模型

AI与药学| Nature Medicine:大模型MEDIC显著降低药店用药指导错误

AI与药学:机器学习预测早期结肠癌中奥沙利铂的疗效

AI与药学:基于大模型的多智能体药物不良事件提取系统—MALADE

FastRx:基于 Fastformer 和记忆增强图神经网络的个性化用药推荐模型

AI与药学|基于知识图谱增强的泛癌症问答大模型框架

AI与药学 | Med-Pal:轻量级大型语言模型在药物咨询领域的应用

AI与药学|当AI遇上老药新用,DrugReAlign—基于大模型的多源提示药物重定位框架

欢迎关注公众号“赛文AI药学”!

赛文AI药学,致力于探索人工智能在药学场景中的创新与应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明哲AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值