开放域OOD主要数据集、评价指标汇总

本文探讨了OOD(Out-of-Distribution)数据集在深度学习中的应用,使用CIFAR-10和CIFAR-100作为分布内训练数据,而OOD测试数据集包括Textures、SVHN等六个不同来源的集合。通过评估错误率、AUC和AUPR等指标来衡量OOD检测性能,并介绍了BDD100K、YouTube_vis、PASCALVOC等多个相关数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🥇 版权: 本文由【墨理学AI】原创首发、各位读者大大、敬请查阅、感谢三连
🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️

0-9

OOD 数据集

in-distribution data (分布内训练数据集)

  • We use CIFAR-10 and CIFAR-100 [ Krizhevsky et al., 2009 ] datasets as in-distribution data. (IND
  • Berkeley DeepDrive-100k
  • Youtube_vis
  • PASCAL VOC

OOD test dataset (分布外测试数据集)

We use the standard split, and train with WideResNet architecture [Zagoruyko and Komodakis, 2016] with depth 40. 

For the OOD test dataset, we use the following six datasets: 

Textures [Cimpoi et al., 2014], 

SVHN [Netzer et al., 2011],

Places365 [Zhou et al., 2017],

LSUN-Crop [Yu et al., 2015],

LSUN-Resize [Yu et al., 2015], 

iSUN [Xu et al., 2015]. 

实验对比示例

0-88

ood 评价指标 : Evaluation metrics.

Evaluation metrics. We evaluate the performance of OOD detection by measuring the following metrics:

(1) the false positive rate (FPR95) of OOD examples when the true positive rate of in-distribution examples is 95%;
(2) the area under the receiver operating characteristic curve (AUROC);
(3) the area under the precision-call curve (AUPR).

0-100

相关数据集简介

BDD100K(Berkeley DeepDrive-100k)

Youtube_vis —— 实例分割数据集

1-1

PASCAL VOC

1-3

1-4

MS-COCO

1-6

CIFAR-10 和 CIFAR-100

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

9-0

Textures Dataset(DTD)

9-1


📙 精选专栏


计算机视觉领域 八大专栏、不少干货、有兴趣可了解一下

9-9

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值