个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
一、量化投资是怎么火起来的?从传统基金到 AI 策略
在过去几十年里,金融市场的变革一直围绕着“如何让投资变得更理性”而展开。量化投资的兴起,正是这一趋势的核心体现。
但如果你是第一次听到“量化投资”这个词,别急,让我们从最经典的一组对比讲起:
🔍 传统投资 vs 量化投资:一次观念的切换
维度 | 传统投资 | 量化投资 |
---|---|---|
决策方式 | 主观判断,依赖经验和直觉 | 基于数据,使用模型系统自动决策 |
投资风格 | 集中持仓,长期价值挖掘 | 分散组合,依赖因子驱动策略 |
数据使用 | 财报、新闻、调研为主 | 结构化行情 + 非结构化信息(文本/图像) |
投研流程 | 分析师主导,文献调研 +经验判断 | 程序化流程,模型训练 + 回测 +验证 |
简而言之,量化投资就是用 “工程化、模型化、自动化的方式” 去解读市场、决策交易。
📈 量化投资是怎么火起来的?
量化投资其实并不新,它早在上世纪70年代就由 Harry Markowitz 提出“现代投资组合理论”时初具雏形。而真正商业化走红的,是在 2000年之后:
- 2001年起,桥水基金开始用机器学习做组合优化;
- 2010年前后,Two Sigma、Citadel 等美资基金以AI建模+高频交易大杀四方;
- 2016年后,国内也开始兴起以“因子策略+程序化交易”为基础的私募基金,代表如幻方、明汯、九坤;
- 2023年后,LLM与强化学习的融合,让“AI投研”不再是空谈。
可以说,每一轮数据革命,都会推动一次量化范式的跃迁。而AI就是最新一次,也是最彻底的一次革新。
🧠 为什么量化很适合用 AI 来做?
传统量化虽然自动,但 仍然高度依赖“人类专家经验”,比如:
- 哪些因子有效?
- 策略参数如何选?
- 哪些异常值是“信号”,哪些是“噪音”?
这些问题,本质是:我们在用人的智慧设计规则。
但AI的优势恰恰在于它能自动发现模式、优化规则、理解模糊数据(文本、图像)。
尤其是在这些方面,AI 已经开始对传统量化形成降维打击:
任务 | 传统方法 | AI方式 |
---|---|---|
因子构建 | 统计分析 + 金融理论 | 自动从数据中提取高维非线性因子 |
策略生成 | 人写规则 + 参数调优 | 强化学习 / 模型自动迭代策略 |
文本处理(公告/新闻) | NLP工具 + 人工分类 | LLM自动抽取、情绪识别、事件追踪 |
投研分析 | 分析师读报表写PPT | GPT自动生成研究报告 + 组合建议 |
🧩 小结:量化走向AI是必然,而不是可选项
从“人写规则的程序化交易”→“AI生成规则的智能量化”,是整个行业正在发生的趋势。
如果说过去你需要一整支研究团队来做策略、回测、投研,那未来,你可能只需要一个好的大模型 + 一套靠谱的数据管道 + 回测/风控框架。
这就是为什么,我们要开始这套专栏,用真正系统化的方式,带你从 0 构建一个AI量化系统,不是玩具,也不是理论,而是真实可以跑、可以落地的系统。
二、AI 能力全面渗透量化系统的四大核心模块
如果说传统量化投资像一台依赖人力控制的自动机器,那么 AI 加持后的量化系统,更像是一套能自我感知、学习与优化的智能体。
接下来我们就来拆解:在量化投资的四大核心模块中,AI 正在发挥怎样的“破局作用”。
🧱 模块一:数据处理 × AI驱动的数据理解与增强
在量化系统中,数据永远是根基。
但今天的数据早已不再是单纯的 K 线和财报,而是 结构化 + 非结构化 + 多模态 的融合场。
传统量化的数据处理逻辑:
- 选历史行情、财报、宏观指标
- 清洗、归一化、合成因子
AI加持之后:
- 可识别公告中的风险提示、业务调整等关键信息
- 利用 LLM 自动从新闻、研报中抽取事件与情绪标签
- 使用图像模型处理 K线图、成交量热图等视觉特征
- 合成数据增强稀缺样本(比如上市初期的新股因子生成)
关键词工具:BERT / GPT / OCR / LLM-RAG / 多模态模型(DeepSeek-VL、Qwen-VL)
📌 实例:
使用 Qwen2.5 解读财报 PDF → 自动标出“净利润转正”“现金流改善” → 转化为结构化因子流
🧠 模块二:策略建模 × AI 生成 + 强化学习决策引擎
传统量化策略多以 “因子 + 规则 + 参数” 为核心,比如:
if pe_ratio < 15 and roe > 10:
buy(stock)
AI策略建模的变革体现在两个方面:
- 非线性建模:AI可以挖掘复杂的非线性关系,比如用LSTM预测股价涨跌概率;
- 策略生成自动化:甚至可以直接生成交易逻辑,而不是人去“写规则”。
🔧 用到的AI模型:
- LSTM / GRU / Transformer:时间序列预测
- 强化学习(RL):交易动作序列建模,最大化长期收益
- AutoML / AutoAlpha:策略结构搜索与超参调优
📌 实例:
使用 RL + Tick数据训练“交易代理人”,模型自动学习“涨前挂单,跌前撤单”的微结构行为。
⚙️ 模块三:交易执行 × 高频微观决策 + 智能执行
执行模块决定策略是否“能跑得赢交易成本”,而 AI 可以在这个环节干两件事:
- 模拟市场撮合行为,在回测中构建真实市场环境(含滑点、成交率、盘口深度);
- 执行优化模型,比如预测大宗交易前的流动性变化,调整挂单逻辑。
AI执行层可用技术:
- 订单簿模型(使用图神经网络预测盘口行为)
- 执行代理RL模型(在买卖队列中学习如何分批挂单最省成本)
- 微秒级决策系统(融合行情、资金流、异动事件)
📌 实例:
用强化学习代理模型替代 TWAP / VWAP,在流动性紧张时动态分单,平均滑点下降22%。
🧮 模块四:风控与组合优化 × 智能打分 + 动态调仓
在 AI 量化体系中,“风险控制”和“组合管理”已经不是简单的规则配置,而是更加精细化的动态博弈系统。
AI在这个模块能做:
- 对策略输出结果进行评分(基于夏普率、最大回撤等)
- 多策略打分排序 + 组合调仓(通过 LLM 总结多策略的“理由”)
- 结合因子与市场情绪构建“防御模式”与“激进模式”的切换
技术关键词:
- 强化学习的组合控制模型(Portfolio Management as RL)
- GPT-based策略审查器:识别是否有违背风险逻辑的信号
📌 实例:
多策略运行后,用 GPT 模拟“资深风控经理”发言,对高回撤策略建议临时下线并调低权重。
✅ 小结:从“人写规则” → “AI学规则” → “AI创造策略”
量化投资过去靠人去“设定规则”,但 AI 正在颠覆这一模式,转为让模型自己去:
- 看懂数据 → 抽象因子
- 理解行情 → 调整策略
- 协调组合 → 自动投研
这就是为什么 AI × Quant 不只是“效率提升工具”,而是可能会重新定义投资行为的一次范式转移。
三、AI 量化最热门的真实应用场景与项目案例
你可能会好奇:AI量化听起来很厉害,但有没有真正落地?到底谁在做?做成什么样了?
答案是:不仅有人做了,而且国内外都已经跑出不少成熟项目。接下来我们就从以下三类代表性场景出发,看看AI量化到底如何落地:
🧠 场景一:AI × 股票 / ETF 策略实盘系统
这是最“主流”也是最容易商业化的方向。
✅ 应用典型:
- 因子增强模型:传统因子如 PE/ROE 加入 AI 模型评分;
- 市场风格识别:判断是“价值主导”还是“成长当道”;
- 仓位动态控制:结合 AI 判断市场情绪/波动率来自动加减仓;
- ETF配置建议书生成:生成 Robo-Advisor 报告给客户。
📌 案例:
✅【九坤投资】使用图神经网络捕捉板块轮动逻辑
✅【米筐科技】推出基于 LSTM 的日线选股模型
✅【某私募基金】构建 ChatGPT + 回测引擎,实现策略自然语言生成
🕹 场景二:AI × 高频交易 × 微结构决策引擎
这是难度更高但非常有AI价值的领域。
✅ 应用典型:
- 订单簿行为建模(图神经网络、Diffusion建模)
- 盘口深度预测(未来5档买卖的挂单变化)
- 微秒级反应时间的交易信号捕捉
- 强化学习模型执行挂单调整
📌 案例:
✅【Two Sigma】开发用于订单流预测的图网络模型,用于预测市场冲击;
✅【Citadel Securities】使用 RL 进行成交概率建模,优化滑点;
✅【国内某量化团队】用 GPT 模拟成交策略脚本并辅助生成模型执行逻辑。
📚 场景三:AI × 智能投研 × 多模态分析平台
这块是近两年最火的领域之一。用 LLM 做“金融分析师”,每天能“看几千份公告+研报”,总结出影响力最大的事件。
✅ 应用典型:
- PDF财报/公告智能解读:从非结构化PDF提取核心财务指标
- 新闻 / 研报 / 舆情摘要生成
- 组合推荐系统:GPT综合分析多个资产建议调整策略
📌 案例:
✅【OpenBB Terminal】集成了 GPT 进行自然语言投研
✅【ChatQuant(社区项目)】接入 GPT 做公告总结 + 个股机会提醒
✅【某头部券商】基于 DeepSeek-VL 构建图+文+行情多模态“智能分析师”
🔄 衍生场景盘点(你可能没想到的)
场景 | 应用说明 |
---|---|
✅ AI生成因子挖掘日报 | 每日通过LLM自动生成“今日有效因子排行” |
✅ AI预测宏观数据 | 使用大模型生成“CPI预测+走势”并进行策略修正 |
✅ AI客服解释策略操作 | 客户问“为什么今天没买这只股”,GPT自动解答 |
✅ 语音播报投研信息 | LLM+TTS组合,每天9:30播报盘前研报摘要 |
🧩 小结:从策略系统 → 执行平台 → 投研工具,全链条正在被AI“重构”
过去,AI量化更多只是“策略工具”。
今天,AI正在成为整条投资链路上的“决策参与者”。
未来甚至有可能出现:
- 无需人写一行代码的全自动策略生成器
- 能“听新闻 + 看图 + 分析数据”的多模态交易助手
- 能与人协同投研、调仓、做组合的AI投顾团队成员
也就是说,不是AI在帮你炒股,而是你变成了AI的风控员和合作伙伴。
四、AI 量化 ≠ 全自动炒股:最常见的误区与风险
很多人刚接触 AI 量化时,会有一种“科技万能论”的错觉:
“我用 LSTM 模型预测明天股价,训练集上涨得很好,那我是不是能赚钱了?”
遗憾的是:模型拟合得好 ≠ 策略真实可行,甚至有时候是反的。
本章我们就来讲讲 AI 量化里最容易踩的坑、最常见的误区,以及你需要提前规避的风险。
☠️ 误区一:模型能预测市场?其实只是记住了历史
AI 模型(尤其是深度学习)极容易过拟合,它并不理解市场,只是“记住了数据的形状”。
- 你让它预测涨跌,它就找那些特征和涨跌有“偶然关系”的因子;
- 回测看着美如画,实盘就是一地鸡毛。
📌 案例:
某团队训练 Transformer 模型预测次日涨幅,训练集 AUC 0.85,回测收益率年化高达 300%。
结果上线两周,策略净值回撤超 20%,发现模型学到的是“某几只股长期上涨”,根本不是泛化规律。
建议机制:
- 加入交叉验证(时间切片验证)
- 随机打乱某些因子,看模型是否依赖无关特征
- 控制训练集与测试集的时效性差异(不同时期风格不同)
🧱 误区二:回测收益高 ≠ 实盘赚钱
AI 策略回测环境往往“太完美”:
- 没有考虑滑点;
- 没有考虑交易拥堵;
- 没有考虑延迟或挂单失败;
- 没有真实的成交率;
📌 案例:
某策略在 Backtrader 回测中月收益 10%,实盘后发现:
- 实际成交不到 40%
- 遇到热点股封板,买不到也卖不掉
- 冲击成本导致策略变成反指标
建议机制:
- 使用 Tick 数据进行更真实的撮合建模
- 引入“成交模型”、“盘口深度模拟”模块
- 尽量模拟实际交易规则(T+1、涨跌停等)
🕳 误区三:AI模型是黑盒,根本解释不了为什么买这只股票
对于投资策略来说,“可解释性”是一个被严重低估的价值。
AI模型尤其是深度神经网络,虽然预测准确率可能高,但完全不知道为什么它会推荐一个股票。
- 如果你是自己用还好;
- 如果你是团队产品(尤其机构/客户导向),就很难“解释理由”。
📌 案例:
客户问:“为啥今天系统调仓重仓医药股?这几天药明波动很大。”
策略组答不上来,因为模型没提供可解释中间结果。
建议机制:
- 引入特征重要性评估(如 SHAP / LIME)
- 加入 LLM 解释层:对调仓逻辑做自然语言解释
- 设计中间输出:如“行业因子+财务评分+风险因子权重”
🔒 误区四:风控模块缺失,AI策略可能踩雷
AI策略很容易追逐极端波动、偏离均值、异常高动量股票(因为这些“好预测”)——但这也极易踩雷。
常见问题:
- 策略重仓某只妖股/低流动性小盘股;
- 忽略突发政策新闻;
- 无法识别“系统性风险”来进行降仓处理。
📌 案例:
某AI策略在2022年重仓锂电池行业,受益于上涨趋势。
但在大宗商品突然利空政策下迅速大跌,策略无风控机制导致满仓持有至止损触发。
建议机制:
- 增加风险指标打分系统(如波动率、舆情热度)
- 建立“宏观情绪 + 行业情绪”双风控模型
- 添加 AI 风控Agent:自动提示或干预异常持仓结构
🔄 小结:AI 能力越强,越要有人类的边界设计
一句话总结本章内容:
“AI 不等于自动赚钱机器,更像是一个需要你教它炒股的聪明学徒。”
你要做的不是相信模型,而是构建一个合理、稳健、安全的 AI 投资系统:
✅ 策略强 → 不够,还要风控稳;
✅ 拟合好 → 不够,还要能解释;
✅ 回测美 → 不够,还要能实盘跑;
五、作为开发者 / 产品人 / 投资者,你可以如何参与 AI 量化?
聊了这么多,有些人可能已经跃跃欲试,也有人可能仍然心存疑虑:
“我不是金融专业出身,我能做 AI 量化吗?”
“我只会写代码,能不能在这个领域落地一个项目?”
“我是做产品的,有没有我能参与的地方?”
答案是:当然能!而且现在就是最好的窗口期。
AI 量化的关键,不再只是研究能力,而是系统化构建 + 工程能力 + 场景理解的协同。
👨💻 角色一:技术开发者(AI工程师 / 数据分析师 / 量化程序员)
如果你有以下技能:Python / Pandas / PyTorch / 数据处理 / API 接入……
恭喜你,你已经具备做一半 AI 量化系统的基础。
你可以做的:
- 数据采集与处理系统(TuShare / 东方财富 / Selenium 抓取舆情)
- AI 模型训练与调参(策略预测 / 因子评分 / 强化学习交易)
- 回测系统搭建(Backtrader / Zipline / 自研)
- 策略自动生成器(接入 GPT,生成策略草案 → 自动评估)
🧰 推荐入手路径:
- 先跑通一个基础回测系统(推荐 Backtrader + TuShare)
- 接入一个 AI 模型(如 LSTM 预测涨跌)观察效果
- 引入 LLM(如 ChatGLM / DeepSeek)做策略解释器
🧠 角色二:产品经理 / 创业者 / 投研负责人
这个群体往往对用户痛点敏感、对业务逻辑敏锐。
你可以做的:
- 定义场景价值:帮助系统找到“该落地的地方”
- 用户侧视角打磨:比如让调仓建议可以被用户理解与接受;
- 连接工程与业务:搭建一个“不是为了炫技,而是能赚钱/能用”的系统
- 打造产品 MVP:比如构建一个“AI 投研日报”推送系统
📌 案例:
某PM主导构建“每日 AI 智能调仓解释器”,模型输出持仓变动,LLM自动解释变化原因,转化为日报推送。
💼 角色三:投资人 / 私募合伙人 / 自由交易员
这类人最关心的是:策略有没有 Alpha,能不能盈利,有没有风险。
你可以做的:
- 参与策略逻辑评审,引入领域知识监督因子设计
- 配置策略组合,构建资金分配 + 风控边界
- 推动产品合规 / 接入监管机制
- 结合 AI 技术做用户增长 / 客户服务(投顾解释、对话机器人)
🧰 建议实践方向:
- 构建“AI风控助手”看管策略回撤、资金波动;
- 做一个“策略绩效月报自动生成器”,用 LLM 自动分析绩效表现;
🧩 小结:AI 量化是一个“多角色协同”的系统工程
在这个系统中,模型≠全部,你还需要:
- 懂工程的开发者:把想法变成系统;
- 懂场景的产品人:把模型变成落地;
- 懂投资的操盘者:把策略变成收益;
这个领域很大,也很开阔。你不需要独自搞懂所有东西,你需要的是找到适合你的位置,然后:
一起构建一个能跑、能看懂、能赚钱、还能自我优化的 AI 量化系统。
六、我们将构建一个怎样的 AI 量化系统?
现在,你已经知道了:
- AI 为什么可以用在量化投资;
- 它改造了哪些模块、落地了哪些场景;
- 做这件事需要的能力不是“某一种”,而是“协同的系统工程”。
那我们在这个专栏里,要带你构建的,到底是一个什么样的系统呢?
答案是——
✅ 一个真正可跑、可用、可扩展的“AI 量化系统全流程框架”
这个系统不是一个demo,不是一个Colab玩具,也不是一个只能跑回测的策略模型,而是:
“从数据接入 → 策略生成 → 回测评估 → 实盘执行 → 风控管理 → 智能解释 → 可视化交互”的全流程闭环平台。
你将掌握从底层技术到上层组合的全部结构认知,并能一步步构建属于你自己的AI投研系统。
🚀 最后的建议:别急着赚钱,先构建系统思维
做 AI 量化,最怕的是“工具学一堆,策略拼一堆”,结果跑起来一地鸡毛。
最好的路径是:
先建系统认知 → 再拆场景模块 → 一步步跑通 → 再求收益放大。
就像量化世界里的一个核心理念:
赚钱只是副产品,过程控制 + 结构完整才是决定能否长久跑下去的核心。
🌟 如果本文对你有帮助,欢迎三连支持!
👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新
写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。