个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
🚦vLLM 多实例部署 + Nginx 高并发流量控制架构设计实战
打造一个可横向扩展、支持 Token-Level Streaming 的大模型推理服务平台
✨ 摘要
vLLM 作为目前主流的大模型推理引擎,以其高吞吐、低延迟、Token 流式响应能力在服务化部署中大放异彩。
然而,单实例 vLLM 的性能瓶颈与资源绑定问题逐渐暴露:如何支持多 GPU 并行?如何自动扩缩?如何控制超高并发时的请求稳定性?本文将围绕企业级落地场景,系统设计并实战构建一套 “vLLM 多实例部署 + Nginx 网关调度 + 流量控制” 架构方案,解决:
- ✅ 多实例部署架构:GPU 负载均衡 × 进程隔离 × 高可用能力
- ✅ Nginx 网关限流:流式响应稳定性 × API 扩展性 × 并发保护
- ✅ 请求调度策略:Round-Robin / Sticky / 权重分配 / 动态容量追踪
- ✅ 系统优化方案:Timeout 设计、健康探针、GPU 利用率追踪
📚 目录结构
第 1 章|vLLM 推理引擎能力总览与部署约束回顾
1.1 vLLM 架构解析:Tokenizer / KV Cache / Engine Loop
1.2 单实例部署性能瓶颈:并发上限、资源抢占、OOM 风险
1.3 为什么需要多实例 + 网关架构?
第 2 章|多实例部署方案设计:GPU 划分 × Engine 拆分 × 自动化配置
2.1 单机多实例部署:显卡划分 + 多端口进程分离
2.2 多机集群部署:配置模板 + 镜像管理 + 端口规划
2.3 容器化部署推荐实践:Docker + N卡独占调度脚本 + 统一监控 Agent
第 3 章|Nginx × vLLM 架构接入:网关代理 × Stream 转发 × 异常兜底
3.1 Nginx 配置结构设计:proxy_pass、keepalive、timeout
3.2 多端口代理 / 多实例后端路由配置(支持 sticky session)
3.3 错误恢复与连接保活机制(非阻塞流式场景)
第 4 章|高并发请求调度策略:RR / 权重 / Sticky / 容量感知路由
4.1 Round Robin vs Sticky vs IP Hash
4.2 实现 token-stream 的粘性连接保持
4.3 动态调度策略设计:利用率预估 + 实时监控回传 + 智能上游分发
第 5 章|系统优化:限流、健康探针、超时兜底机制
5.1 QPS 限流与请求峰值保护机制(Nginx + Lua)
5.2 服务不可用自动降级逻辑(502 → 补偿请求 / 离线回包)
5.3 健康探针:vLLM REST 状态探测 + 自定义 Metrics 推送 Prometheus
第 6 章|工程落地建议:微服务架构集成 × 多租户 × 日志采集
6.1 与 FastAPI / Flask / OpenAPI 的上层封装方式
6.2 多租户 GPU 隔离调度实践
6.3 日志结构统一、流量可追踪、输出 token 收集建议
第 1 章|vLLM 推理引擎能力总览与部署约束回顾
在构建高性能大模型服务平台时,选择正确的推理引擎只是第一步,如何部署、调度、扩展才是工程的重头戏。
本章将从 vLLM 的架构出发,分析它的吞吐优势与并发限制,解释为什么“多实例部署 + Nginx 调度”是解决高并发请求、低延迟响应与稳定服务的关键策略。
1.1 vLLM 架构简析:吞吐背后的秘密
vLLM(vllm.ai) 是为了解决大模型推理延迟高、吞吐差、GPU 浪费严重等问题而设计的高性能推理框架。它最核心的架构创新点有三:
✅ Token-level Streaming:边生成边返回
- 用户无需等待全部输出完成,token 一生成就能发送;
- 构建 Chat API 时带来类似 OpenAI 的流式体验;
- 实现靠 异步调度 + 分批回传。
✅ Continuous Batching:动态请求融合调度机制
- 支持将多个请求按 token 对齐动态打包;
- GPU 并行执行效率显著提升;
- 减少 batch padding 资源浪费,吞吐提高 2~3 倍。
✅ 高效 KV Cache 管理(PagedAttention)
- 重构了 KV Cache 的存储与调度方式;
- 比 HuggingFace Transformers 高出 2× 吞吐;
- 支持百条并发聊天请求稳定运行。
1.2 单实例部署的性能瓶颈与隐性风险
虽然 vLLM 性能强大,但实际部署过程中,单实例模式存在显著限制,尤其在企业级服务场景下:
问题类型 | 描述说明 |
---|---|
GPU 利用不均 | 多卡机器上单进程只能占用一张卡(unless 自定义 Device Map) |
请求阻塞风险 | 极端高并发(>1000 QPS)下,未及时排队请求会被拒绝或超时 |
无自动扩容能力 | 没有 built-in 的多实例调度或微服务注册机制 |
Token Streaming 易被中断 | 连接池耗尽 / 异常返回 / 连接被 Nginx kill,影响长连接服务 |
单点不可用风险 | vLLM 实例 crash 会导致服务不可用,未默认支持 health check + 自动恢复 |
1.3 为什么需要“vLLM 多实例 + Nginx 网关”架构?
当你面向的是多用户、多租户、流量突增、跨任务并发的服务场景,单实例无法满足服务稳定性、弹性扩展、性能释放的要求。
✅ 多实例部署 = 横向扩容
- 按 GPU 颗粒度部署多个 vLLM 实例;
- 每个实例独立监听不同端口或服务地址;
- 支持基于资源池快速 scale in / scale out。
✅ Nginx 网关 = 统一入口 + 流量控制中枢
- 统一暴露
/chat/completions
接口; - 将请求按策略路由到多个后端实例(RR、权重、IP hash 等);
- 支持限流、健康探针、故障回退、Token 流式代理等功能。
架构草图(文字版):
┌──────────────────────┐
│ NGINX 网关 │
│ ↳ 统一入口 /api │
│ ↳ 负载均衡策略配置 │
│ ↳ 流控 / 错误兜底 │
└────────┬─────────────┘
│
┌────────────────┼────────────────┐
↓ ↓ ↓
vLLM 实例 A vLLM 实例 B vLLM 实例 C
(GPU-0, port 8001) (GPU-1, port 8002) (GPU-2, port 8003)
📌 小结:
✅ vLLM 强在性能
⚠️ 弱在扩展性和服务能力要想让 vLLM 真正服务于“上生产”、“可观测”、“可控制”的大模型 API 系统,就必须构建多实例部署 + 网关流控的完整调度架构。
第 2 章|多实例部署方案设计:GPU 划分 × Engine 拆分 × 自动化配置
单实例 vLLM 虽强,但在真实环境中你可能有 4 张 GPU,10 个微服务请求源,2000 并发用户,这时的第一反应不该是“调 batch size”,而是“拆实例 + 控流 + 调度”。
本章我们将介绍如何在单机/多机环境下,高效部署多个 vLLM 实例,实现 GPU 独占、端口隔离、资源隔离、进程可观测,并为后续流量调度打下基础。
2.1 单机多实例部署:GPU 绑定 + 多端口进程隔离
✅ 策略:一张卡绑定一个进程,一个端口服务一个实例
假设你有 4 张 GPU(0~3),推荐直接拉起 4 个 vLLM 服务实例:
# 示例启动方式
CUDA_VISIBLE_DEVICES=0 python3 -m vllm.entrypoints.openai.api_server \
--model /models/llama-7b \
--port 8001 \
--tensor-parallel-size 1 &
CUDA_VISIBLE_DEVICES=1 python3 -m vllm.entrypoints.openai.api_server \
--model /models/llama-7b \
--port 8002 \
--tensor-parallel-size 1 &
# ... 依此类推
📌 优点:
- 资源独占,显存隔离,进程互不干扰;
- 端口分离,方便 Nginx 注册 upstream;
- 一张卡出问题不会影响全局,可热重启;
2.2 多机集群部署:配置模板化 + 镜像统一 + 资源标签管理
✅ 推荐使用统一部署模板(shell / yaml / docker compose):
# 启动参数统一抽象为模板
VLLM_MODEL=/models/qwen-7b
VLLM_PORT=8001
VLLM_GPU=0
CUDA_VISIBLE_DEVICES=$VLLM_GPU python3 -m vllm.entrypoints.openai.api_server \
--model $VLLM_MODEL \
--port $VLLM_PORT \
--tensor-parallel-size 1
🧱 建议引入:
工程实践 | 功能说明 |
---|---|
模板文件夹结构 | 每台机器部署统一脚本模板,可 version 管理 |
显卡健康探针 | 启动前检查 nvidia-smi 是否正常、内存空闲等 |
服务注册 JSON 模板 | 所有 vLLM 实例信息写入 registry.json ,供上层 Nginx 读取 |
2.3 容器化部署推荐:Docker + 显卡独占策略 + Agent 监控
✅ 推荐用 --gpus device=N
显卡绑定方式:
# Dockerfile 简要片段
FROM python:3.10
COPY . /app
RUN pip install -r requirements.txt
CMD ["python3", "-m", "vllm.entrypoints.openai.api_server", "--model", "/models/llama-7b", "--port", "8001"]
# 容器启动(绑定 GPU-1)
docker run --rm --gpus '"device=1"' -p 8002:8002 vllm-instance
🔍 配套容器机制建议:
工具 / 功能 | 推荐方式 |
---|---|
容器状态监控 | Prometheus + Node Exporter + Custom Probe |
实例进程守护 | supervisor / systemd / watch dog |
日志写入与采集 | stdout → Docker logging → Loki / Filebeat |
动态实例注册(可选) | etcd / consul / redis + instance TTL |
📌 小结:
多实例部署的核心是 “控制住物理资源 + 统一服务出口”。只有先把每个实例稳定跑起来,Nginx 调度、限流容错、横向扩展才有意义。
无论是 Docker + 脚本组合,还是裸机启动 + YAML 管理,只要能做到:
- 每张 GPU 绑定一个服务;
- 每个服务暴露一个端口;
- 所有端口统一登记 → 上游网关代理;
——就是一套稳定可扩展的基础设施。
第 3 章|Nginx × vLLM 架构接入:网关代理 × Stream 转发 × 异常兜底
多实例部署只是第一步,要想真正做到统一入口、高可用、流量调度、限流控制、异常恢复,必须构建一个可靠的网关层。
Nginx 是天然适合做大模型推理服务入口的组件 —— 它轻量、稳定、支持长连接、模块丰富、扩展性强,非常适合构建 vLLM 的高并发前置入口。
3.1 网关角色定位:vLLM 的多实例统一代理中心
在 vLLM 多实例部署架构中,Nginx 主要承担以下 3 个角色:
角色 | 功能说明 |
---|---|
统一代理层 | 将外部请求通过 /v1/chat/completions 接入,转发至后端某个实例 |
负载均衡器 | 按 Round-Robin / Sticky / 权重等策略分发流量 |
稳定性保障层 | 请求失败重试、502 兜底、连接超时设置、限流保护 |
3.2 Nginx × vLLM 基础代理配置(支持流式输出)
以下是一个支持流式 Token 输出的标准配置片段(适用于 RESTful 推理 API):
http {
upstream vllm_pool {
server 127.0.0.1:8001;
server 127.0.0.1:8002;
server 127.0.0.1:8003;
server 127.0.0.1:8004;
}
server {
listen 8080;
server_name localhost;
location /v1/chat/completions {
proxy_pass http://vllm_pool;
# 保持长连接
proxy_http_version 1.1;
proxy_set_header Connection "";
# 关闭缓冲,支持 SSE / 流式返回
proxy_buffering off;
proxy_cache off;
# 设置更大的超时
proxy_read_timeout 3600;
proxy_send_timeout 3600;
}
}
}
✅ 流式返回关键点:
proxy_buffering off
:防止 Nginx 把响应缓存完才返回;proxy_http_version 1.1 + Connection ""
:保持 HTTP KeepAlive;read_timeout
足够大:生成长文本时防止连接中断。
3.3 多实例路由策略支持(Sticky、IP Hash、权重)
Nginx 支持的常见调度策略包括:
策略类型 | 使用方式 | 适用场景 |
---|---|---|
Round Robin | 默认即可 | 均衡负载,适合无状态请求 |
IP Hash | ip_hash; | 会话保持,适合短时上下文缓存场景 |
Weight | server 127.0.0.1:8001 weight=3; | 控制不同实例负载权重 |
示例(Sticky):
upstream vllm_pool {
ip_hash;
server 127.0.0.1:8001;
server 127.0.0.1:8002;
}
📌 注意:vLLM 在 Token Streaming 场景下必须粘性连接,否则中断风险极高。
3.4 异常兜底策略(服务不可用恢复机制)
✅ 推荐 Nginx 健康检查配置:
server {
location /v1/chat/completions {
proxy_next_upstream error timeout http_502 http_504;
proxy_next_upstream_tries 3;
}
}
✅ 自定义错误页面:
error_page 502 = @fallback;
location @fallback {
return 200 '{"error":"模型服务暂时不可用,请稍后重试"}';
add_header Content-Type application/json;
}
📌 小结:
Nginx 不是简单的反向代理,而是大模型推理系统的流量调度中枢。
它决定了服务能不能稳定响应、能不能控制流量、能不能优雅回退 ——
尤其是在 Token 流式输出场景,连接保持、非阻塞响应、健康探针、异常兜底,都是必须考虑的能力。
第 4 章|高并发请求调度策略:RR / Sticky / 权重 / 容量感知路由
真正的难点不在“多个实例能跑起来”,而是:当 1000+ 请求同时打过来,如何做到既不挤爆某台 GPU,又能稳定返回结果?
本章我们将系统梳理 vLLM 多实例部署中的 4 大常用调度策略,结合 Nginx 原生能力和可扩展模块,实现高吞吐 × 低延迟 × 高粘性的请求分发体系。
4.1 Round-Robin(默认):负载平均但不粘性
upstream vllm_pool {
server 127.0.0.1:8001;
server 127.0.0.1:8002;
server 127.0.0.1:8003;
}
✅ 优点:
- 简单无脑,分发公平;
- 适合短请求、小 batch 场景。
❌ 缺点:
- 不适用于流式长连接(中途切换实例会断流);
- 无法识别每个实例当前负载,有“盲发”风险。
4.2 Sticky Session(基于 IP Hash / Token 映射)
upstream vllm_pool {
ip_hash;
server 127.0.0.1:8001;
server 127.0.0.1:8002;
}
✅ 优点:
- 能确保同一用户请求落在同一个实例上,适合流式输出;
- 可以与 KV Cache、上下文保持策略配合使用。
⚠️ 建议:
- IP Hash 粘性程度受限,建议使用 Token-based Stickiness;
- 可通过 Nginx Lua 模块引入
session_id → backend
映射逻辑。
4.3 权重调度:让“强壮”实例承担更多流量
upstream vllm_pool {
server 127.0.0.1:8001 weight=2;
server 127.0.0.1:8002 weight=1;
}
✅ 应用场景:
- GPU-0 是 A100,GPU-1 是 T4,可以设置不同负载权重;
- 某些实例预留给重要租户,其他实例处理通用流量。
4.4 容量感知调度(高级策略,推荐平台集成)
🧠 基本思想:
通过每个 vLLM 实例实时上报以下指标:
- 当前并发量(active_requests)
- 推理队列长度
- token latency
- 当前 GPU 显存占用
然后由 Nginx + 外部调度器(如 Lua 脚本 / 轻量服务)动态分配请求至负载最轻的实例。
🛠️ 实现建议:
- 每个实例暴露
/metrics
接口(或集成 Prometheus + PushGateway); - 调度服务定期采集状态,维护实例负载表;
- Nginx 通过
proxy_pass
接入调度服务转发地址。
-- 伪代码:请求动态选择当前最空闲的实例地址
local backend = pick_least_loaded_backend()
ngx.var.target = backend
proxy_pass http://$target;
✅ 对比总结表
策略类型 | 是否粘性 | 是否感知实例负载 | 是否适合流式请求 | 实现复杂度 |
---|---|---|---|---|
Round Robin | ❌ | ❌ | ❌ | 低 |
IP Hash / Sticky | ✅ | ❌ | ✅ | 中 |
权重分配 | ✅(弱) | 部分 | ⚠️ | 中 |
容量感知调度 | ✅ | ✅ | ✅ | 高 |
📌 小结:
调度策略不是“选一个”,而是按业务场景组合应用:
- 普通用户 → Sticky Session + Round Robin
- 大客户租户 → 权重调度
- Token Stream 请求 → IP 粘性
- 服务平台 → 容量感知调度 + 智能切换
如果你正计划构建一个对外提供大模型 API 的服务平台,“请求分发策略”将是你系统性能和稳定性的核心胜负手。
第 5 章|系统优化:限流、健康探针、超时兜底机制
架构设计得再好,如果碰上突发高并发、实例 crash、token 生成超时、Nginx 连接被打爆,系统依旧会一地鸡毛。
本章将从三个维度出发,为你的 vLLM 多实例推理服务添加「护航能力」:请求限流、健康探测、超时恢复。
5.1 请求限流:防止雪崩的第一道闸门
✅ 常见风险:
- 高频请求导致 GPU 资源被快速吃光;
- 流式长连接过多,Nginx keepalive 连接耗尽;
- 多个无意义请求(如刷接口)导致 vLLM 实例响应迟缓。
🛠️ Nginx 层限流配置:
# 设置限流 zone(按 IP 控制)
limit_req_zone $binary_remote_addr zone=req_limit_per_ip:10m rate=10r/s;
server {
location /v1/chat/completions {
limit_req zone=req_limit_per_ip burst=20 nodelay;
...
}
}
参数项 | 含义说明 |
---|---|
10r/s | 每秒最多 10 个请求 |
burst=20 | 瞬时可突发 20 个请求 |
nodelay | 超出后立即返回 503(不排队) |
5.2 健康探针:让坏实例“自动下线”
vLLM 本身提供了 REST API(如 /healthz
或自定义 /status
)用于状态检查。
🧠 为什么需要探针:
- 某些实例 GPU 崩溃 / OOM 后还在监听端口,但返回异常;
- 某些实例卡死在 token streaming 中,连接不释放;
- 网关需要动态摘除不可用实例,保障整体可用性。
🛠️ Nginx 配合 Lua 或 负载均衡层探测机制:
推荐使用第三方健康检查模块或负载管理服务(如 openresty)实现以下能力:
-- 伪代码:Nginx Lua 探测实例状态
for _, instance in ipairs(vllm_pool) do
local status = http_get(instance .. "/healthz")
if status ~= 200 then
mark_unavailable(instance)
end
end
5.3 Token 级超时与连接保活设计
✅ 常见超时类型:
场景 | 问题表现 | 原因 |
---|---|---|
超长文本生成 | 请求返回超时 | 单 token 太慢 / tokenizer 耗时 |
大 batch 请求 | 第一个 token 快,后续生成堵塞 | batch size 配置不合理 |
网络丢包 | SSE 链接被中断 | keepalive 失效 |
🛠️ Nginx 设置推荐:
location /v1/chat/completions {
proxy_read_timeout 3600; # 单请求最长生成时间
proxy_send_timeout 3600;
keepalive_timeout 75; # 长连接保活时长
send_timeout 10; # 发送响应的最长等待
}
✅ 建议设置后端推理服务的token timeout / token limit:
--max-tokens 2048 --request-timeout 120
5.4 降级兜底:不可用时的 Fallback 机制
即使限流 + 探针 + timeout 全配好,还是可能遇到 vLLM 崩溃或全部实例不可用的情况。
🛠️ 推荐使用:
error_page 502 = @fallback;
location @fallback {
return 200 '{"error":"模型服务当前不可用,请稍后重试"}';
add_header Content-Type application/json;
}
✅ 更进一步的兜底策略:
方案 | 描述说明 |
---|---|
兜底 API | fallback 转发至一个轻量版本模型(如 3B 预设) |
兜底缓存 | 使用 Redis 缓存上一次回答 |
客户端策略提示 | 返回结构中建议客户端退避重试或回滚交互界面 |
📌 小结:
大模型服务一定会挂,问题在于:你能否“及时感知 + 有效限制 + 优雅兜底”。
系统稳定性 = 预测错误 × 自动保护 × 反馈可控。限流、探针与超时设置,不仅提升体验,更是服务上线的门槛机制。
第 6 章|工程落地建议:微服务架构集成 × 多租户隔离 × 日志采集方案
能部署 ≠ 能上线。一个真正“可落地”的 vLLM 多实例推理系统,必须能嵌入到微服务框架中、支持租户隔离、可观测、可调优、可快速扩展。
本章聚焦系统工程师、平台研发人员,从微服务标准化、资源调度、监控追踪三个角度总结落地要点。
6.1 构建 vLLM 推理 API 的微服务外壳
虽然 vLLM 自带 OpenAI 风格接口(兼容 /v1/chat/completions
),但在真实业务中建议做一层服务封装,以支持如下能力:
能力项 | 推荐方式 |
---|---|
请求校验与重写 | FastAPI / Flask 中间件层做 Prompt 格式验证 |
会话状态管理 | Redis × Session ID 维护上下文 |
鉴权 + 日志拦截 | JWT + 全链路日志链 + IP 白名单 |
用户配置绑定 | 用户 → 模型权重路径 / token 限制 / 并发上限 |
请求重放与错误回放 | 将失败请求记录入 Kafka / Redis 等以供重放调试 |
✅ FastAPI 封装 vLLM 网关调用示例:
@app.post("/chat")
async def chat(payload: ChatRequest):
# 路由选择 / 动态权重下发
backend_url = router.select_backend(payload.user_id)
# 构造 OpenAI 风格请求并代理到 vLLM 实例
response = await httpx.post(f"{backend_url}/v1/chat/completions", json=payload.dict())
return StreamingResponse(response.aiter_lines())
6.2 多租户部署架构设计与资源隔离机制
🧠 背景:
在企业服务或平台型产品中,不同用户需绑定不同模型 / 显卡资源 / 推理配额。
✅ 建议引入如下多租户架构策略:
子系统 | 功能 | 实现建议 |
---|---|---|
模型租户管理系统 | 每个用户可选择不同模型(Qwen、BLOOM 等) | 数据库 + config 生成器 + 动态实例拉起 |
GPU 使用权限表 | 显卡资源与用户绑定 | 基于 device ID + docker 显卡隔离 |
请求限额管控 | 控制 token 总数 / QPS | Redis Counter + API Gateway 限流 |
模型上下线服务 | 支持租户请求特定模型版本动态加载 | 动态加载权重路径 → 热更新服务节点 |
🛠️ FastAPI 多租户请求调度示意:
@app.post("/chat")
async def chat(payload: ChatRequest):
tenant_cfg = load_user_config(payload.user_id)
backend_url = route_by_gpu_policy(tenant_cfg["gpu_id"])
return await forward_to_vllm(backend_url, payload)
6.3 日志采集 × Token 输出追踪 × 请求监控体系
vLLM 本身不带监控机制,但作为 API 服务,请求流程、Token 输出、延迟分布、用户行为日志都必须能追踪。
✅ 采集模块建议:
内容类型 | 推荐工具链 |
---|---|
API 调用日志 | FastAPI logging + JSON formatter + Filebeat |
token 输出统计 | 在 proxy 层拦截 SSE,统计 tokens 数 / 生成时延 |
错误码记录 | 按请求粒度输出:输入错误 / 编码失败 / timeout 等 |
推理过程分析 | Prometheus + vLLM metrics 曝光(自定义 exporter) |
日志聚合与回放 | ELK(ElasticSearch + Logstash + Kibana) 或 Loki |
示例结构化日志格式(推荐 JSON):
{
"user_id": "tenant-123",
"model": "qwen-7b",
"tokens": 527,
"latency_ms": 893,
"status": "success",
"backend": "127.0.0.1:8003",
"timestamp": "2025-04-13T22:42:10Z"
}
📌 小结:
架构完成部署只是“第一版上线”的起点,真正具备工程能力的系统还需要:
- 拥有上层调用能力(API 网关 / 多租户管理);
- 拥有“问题可观测”的日志 + 指标系统;
- 拥有“资源可控”的 GPU 隔离 + 限流规则;
从 demo 到生产,差的不只是容器,而是一套平台思维。
✅ 写在最后
本篇文章为你系统呈现了一条完整的:
vLLM 多实例部署 → Nginx 网关调度 → 请求策略 → 系统稳定性 → 工程落地路径
适用于:
- 正在构建多 GPU 推理平台的 AI 团队;
- 希望让大模型服务“真正跑得稳、撑得住、调得动”的研发团队;
- 打算将 LLM 服务接入 API 网关、微服务架构的系统架构师。
如果觉得内容有价值,欢迎:
👍 点赞支持
📂 收藏备用
🔔 关注专栏
🧠 一起构建真正可落地的大模型部署体系!