个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。
企业业务流程型 Agent 架构实战:审批流 / 报表流 / 客服流的统一任务系统设计
🧠 摘要
在企业项目落地过程中,Agent 最具商业价值的场景不是“问答”,而是“流程”:审批自动化、报表生成、客户服务、入职流程、订单流转等。它们天然具备结构化输入、清晰阶段、明确规则,却又充满信息冗余与重复劳动,正是智能体系统最适合切入的空间。本篇将聚焦企业常见的三类流程(审批流 / 报表流 / 客服流),剖析如何构建一个统一的“流程型任务系统”,通过多 Agent 角色驱动、流程引擎解耦、表单结构识别与动态状态接力,打造真正能融入业务、提升效率的 Agent 系统产品。
📚 目录
一、为什么企业级 Agent 应该从“流程型任务系统”切入?
- 问答不等于智能,流程才是生产力场景
- 审批 × 报表 × 客服,本质都是“状态驱动 + 动作执行”的智能流程
二、统一流程型 Agent 系统的核心结构设计
- 流程定义器(FlowSchema × DSL × Graph)
- 状态机引擎(StateNode × EventTrigger × TransitionGuard)
- 多 Agent 注册体系(Role × Trigger × Action)
三、实战场景一:审批流程 × 表单智能抽取 × 多级指令判定
- 构建“表单识别 + 权限审核 + 多级审批链”智能体系统
- 如何通过 Agent 替代人工判定与流程判断
四、实战场景二:报表流转 × 数据对齐 × KPI × NLP 多模联动
- 构建一个“表格上传 + 多源对比 + 报表生成 + 审核总结”的复合任务链
- 如何用多个角色 Agent + 工具协作实现业务标准化自动生成
五、实战场景三:客服自动流转系统 × 工单理解 × 多轮状态管理
- 多轮对话型 Agent 如何理解上下文、分派任务、跨角色协作
- 工单追踪 × 异常判定 × 回复生成 × 日志写入的完整闭环
六、总结:如何构建一个企业级 Agent 工作流系统?
- 统一结构抽象:流程 × 工具 × Agent × 状态
- 通用化能力沉淀:Prompt 模板化 × 工具模块化 × 控制逻辑参数化
一、为什么企业级 Agent 应该从“流程型任务系统”切入?
很多团队落地 Agent 系统时,最初的选择是:“做个问答机器人”,于是就有了:
❌ 文档问答系统、❌ 客户知识搜索助手、❌ 问啥答啥的 AI 小助手。
这些产品确实能在体验上提供“智能感”,但一旦进入实际业务,就会遭遇这些问题:
- 模型输出不稳定
- 无法控制行为路径
- 结果不可复用、不可回放、不可复审
- 无法被嵌入流程系统 / ERP / 表单审批流中
而企业真正最具价值的部分,是那些 “重复、复杂、流程化”的事情,比如:
业务流程 | 核心任务 |
---|---|
审批流 | 识别表单内容 → 判定是否合规 → 触发流程转移 |
报表流 | 对比上传数据 → 抽取指标 → 生成日报/周报 |
客服流 | 多轮对话理解 → 生成答复内容 → 标记处理状态 |
它们有明确的结构,有稳定的阶段,有固化的动作,非常适合 Agent 系统介入:
✅ 提取关键信息
✅ 判定行为路径
✅ 生成可复用的结果
✅ 管理任务状态与角色权限
✅ 具备过程透明性与可审计性
📌 换句话说:流程型任务系统才是 Agent 真正成为“生产力工具”的起点。
二、统一流程型 Agent 系统的核心结构设计
企业流程不等于 BPM 引擎,不等于流程图系统,而应该是一种**“Agent 可理解 × 可执行 × 可反馈”的智能流程结构。**
因此你要搭建一个“流程型 Agent 系统”,建议围绕以下三类核心结构:
✅ 1. 流程定义器(FlowSchema × DSL × Graph)
我们需要一种方式描述:
🧩 流程有哪些阶段?
🛠 每个阶段由哪个 Agent 执行?
🔀 每个阶段的跳转逻辑是怎样的?
🎯 何时进入终态 / 失败态?
📦 示例流程定义结构:
{
"flow_id": "approval_001",
"nodes": [
{"id": "start", "type": "input", "agent": "FormReaderAgent"},
{"id": "validate", "type": "decision", "agent": "PolicyCheckAgent"},
{"id": "approve", "type": "action", "agent": "SupervisorAgent"},
{"id": "end", "type": "terminal"}
],
"edges": [
{"from": "start", "to": "validate"},
{"from": "validate", "to": "approve", "condition": "pass"},
{"from": "validate", "to": "end", "condition": "reject"},
{"from": "approve", "to": "end"}
]
}
📌 这是一个 mini DSL(流程图语义),本质上构建了一个任务状态图。
✅ 2. 状态机引擎(StateNode × EventTrigger × TransitionGuard)
流程系统不是静态数据结构,它必须是一个状态机,具备:
- 当前节点状态
- 可触发的事件(用户行为 / Agent 输出)
- 节点跳转条件与守卫函数(如通过/失败)
class FlowEngine:
def next_node(self, current, context):
if current == "validate" and context["score"] > 0.9:
return "approve"
else:
return "end"
📌 你可以将 context
封装为 task_state
,支持多 Agent 注入输入。
✅ 3. 多 Agent 注册体系(Role × Trigger × Action)
你需要设计一个 Agent 注册机制,明确:
- 该 Agent 负责哪个节点?
- 需要何种输入格式?
- 输出写入流程哪个变量?
- 输出后是否触发跳转?
📦 示例注册:
{
"agent": "FormReaderAgent",
"role": "表单结构抽取",
"input": {"form_image": "base64"},
"output": {"fields": "dict"},
"bind_node": "start"
}
📌 每个 Agent 成为流程系统的“动作节点”,自动接入流程引擎执行调度。
✅ 总结一下:
结构组件 | 功能 |
---|---|
FlowSchema | 描述任务的流程结构 |
StateEngine | 管理任务状态、控制跳转逻辑 |
AgentRegistry | 接入多角色 Agent 的能力,统一调度与注入 |
三、实战场景一:审批流程 × 表单智能抽取 × 多级指令判定
🎯 场景简介:员工报销审批流
在企业中,报销审批流程一般如下:
- 员工提交发票图片 / 报销申请表
- 系统自动抽取信息(发票号、金额、科目)
- 判断是否符合公司制度(是否超额、是否重复、是否特殊类别)
- 根据规则进入审批流程(直属上级 → 财务 → 管理层)
- 最终生成审批报告,反馈结果给员工
这个流程用传统系统做非常复杂,但用 Agent 系统做则非常自然:一个输入,一组规则,多个角色,清晰分阶段。
✅ 步骤一:构建流程图结构(FlowSchema)
{
"flow_id": "reimbursement_approval",
"nodes": [
{"id": "start", "agent": "FormReaderAgent"},
{"id": "validate", "agent": "PolicyCheckAgent"},
{"id": "approve_lv1", "agent": "TeamLeadAgent"},
{"id": "approve_fin", "agent": "FinanceAgent"},
{"id": "end", "type": "terminal"}
],
"edges": [
{"from": "start", "to": "validate"},
{"from": "validate", "to": "approve_lv1", "condition": "pass"},
{"from": "validate", "to": "end", "condition": "reject"},
{"from": "approve_lv1", "to": "approve_fin"},
{"from": "approve_fin", "to": "end"}
]
}
✅ 步骤二:Agent 注册与输入输出结构
Agent | 功能 | 输入 | 输出 |
---|---|---|---|
FormReaderAgent | 提取票据结构 | 发票图片 | { "invoice_no": "xxx", "amount": 123, ... } |
PolicyCheckAgent | 校验是否违规 | 抽取数据 | {"pass": true, "reason": "金额未超限"} |
TeamLeadAgent | 部门审批 | 校验通过后 trigger | {"opinion": "同意", "signed_by": "张经理"} |
FinanceAgent | 财务终审 | 审批意见 + 结构数据 | {"final_result": "通过"} |
📌 所有中间输出写入 task_state.agent_outputs
,系统通过 task_state → transition
控制流程跳转。
✅ 步骤三:流程判定规则(TransitionGuard)
class RuleEngine:
def validate_policy(state):
amount = state["agent_outputs"]["FormReaderAgent"]["amount"]
if amount > 10000:
return {"condition": "reject"}
return {"condition": "pass"}
📌 你可以构建一个“流程规则引擎”,用于判定节点跳转条件。
✅ 步骤四:Prompt 设计(以 PolicyCheckAgent 为例)
请根据以下报销信息判断是否存在违反公司财务制度的情况:
报销信息:
- 金额:{{amount}} 元
- 科目:{{category}}
- 附件数量:{{attachments_count}}
输出格式:
{
"pass": true/false,
"reason": "..."
}
🧠 模板结构 + 动态变量注入机制,使得流程行为稳定可控。
✅ 整体流程图(抽象)
✅ 拓展能力建议
能力 | 实现方式 |
---|---|
动态审批人注入 | task_state[“user_info”] 决定审批路径 |
审批意见总结 | SummaryAgent 对多级审批进行 NLP 总结 |
多轮补充材料 | 使用 AsyncFlow + MessageAgent 请求补件材料 |
审计回放 | trace_id 对应的全流程输出用于审计回查 |
📌 这种基于 Agent 的审批流系统的好处是:
- 所有判断与行为模块都可用 Prompt + Tool 快速组合
- 流程路径可控,支持条件跳转、动态插入、链路回滚
- 每一个 Agent 执行行为都可追踪、可复盘、可 Debug
- 多人协作变为“多智能体”协作,系统感知能力更强
四、实战场景二:报表流转 × 数据对齐 × KPI × NLP 多模联动
🎯 场景简介:日报 / 周报自动生成任务
业务团队每天下班都要做日报,每周还要填周报:
- 上传截图、复制数据、写 KPI 指标
- 再总结一句话,还要注意风格:不要太水,但也不能太花哨
- 最后还要提交给上级审核,必要时做打回或修改
这类任务重复度极高,流程明确,但人效极低,正是构建“复合型 Agent 系统”的理想场景。
✅ 目标:构建一个“上传报表截图 → 结构化抽取 → 自动总结 → 审核输出”的 Agent 系统
🔧 核心步骤拆解
步骤 | Agent | 工具 | 输入 | 输出 |
---|---|---|---|---|
1. 图像识别 | VisionAgent | OCR / Layout Parser | 报表截图 | 表格结构化数据 |
2. KPI 抽取 | KPIAgent | 指标提取工具 | 表格数据 | KPI JSON 格式 |
3. NLP 总结 | SummaryAgent | 文本生成工具 | KPI + 背景 | 自然语言日报 |
4. 审核判断 | CriticAgent | StyleChecker / PolicyCritic | 文本内容 | 是否合格、是否建议改写 |
5. 日志记录 | LogAgent | TraceWriter | 全链路输出 | 数据上链 / 落盘 |
📦 示例 task_state
中的结构:
{
"agent_outputs": {
"VisionAgent": {"table": [[...], [...]]},
"KPIAgent": {"kpi": {"销售额": "122万", "同比": "14%"}},
"SummaryAgent": {"text": "今日销售额122万,同比上涨14%。"},
"CriticAgent": {"pass": true, "score": 0.93}
},
"final_output": "今日销售额122万,同比上涨14%。"
}
✅ Prompt 结构控制(SummaryAgent)
请根据以下 KPI 数据,生成一条日报内容,要求风格简洁、符合业务用语:
KPI 数据:
- 销售额:{{销售额}}
- 同比增长:{{同比}}
输出:
- 中文一句话
- 开头报数据,结尾给判断
📌 可支持多版本(v1 正式风格 / v2 新闻风格 / v3 创意风格),通过参数切换。
✅ 审核模块设计(CriticAgent)
CriticAgent 的职责是:
- 判断输出风格是否达标
- 给出打分与改写建议
- 如需要修改,则走回路重新生成
{
"score": 0.91,
"pass": true,
"suggestion": null
}
🧠 可以集成评分工具(如 GPT Judge / StyleCritic),也可以基于规则校验关键词。
✅ 多模输入整合机制
除了截图,还可能有 Excel / 表单 / 语音输入(如讲日报内容)。
你可以统一输入模型结构:
{
"input": {
"image": "...",
"excel": "...",
"audio": "..."
}
}
不同模态分派给不同 Agent,并发处理:
results = await gather(
vision_agent.receive(image),
excel_agent.receive(excel),
asr_agent.receive(audio)
)
📌 多模 → 单状态池汇总 → 提供 KPIAgent 联合处理。
✅ 输出合成策略
你可以构建一个 ReportBuilderAgent
,将所有结构合并为:
{
"report": "今日销售额122万,同比上涨14%。",
"data": {
"表格": "...",
"kpi": {...},
"审核意见": "合格"
}
}
并支持:
- Markdown 报表导出
- 自动发送钉钉 / 企业微信
- 存档 trace 到日志系统
📌 该系统具有完整任务闭环:
图像 / 数据输入 → 多模抽取 → 指标解析 → NLP 生成 → 内容审核 → 汇总输出
支持高效落地日报、周报、财务数据流、数据解读流、质量周报等场景。
五、实战场景三:客服自动流转系统 × 工单理解 × 多轮状态管理
🎯 场景简介:客户支持与工单处理流程
在客服体系中,常见的智能 Agent 落地方式包括:
- 用户发起咨询
- 系统自动分类、检索 FAQ 或生成答复
- 工单升级或流转至人工
- 多轮上下文处理与问题闭环跟踪
- 最终归档、标记、评分与质量审计
与报销流、报表流不同,客服任务具有以下特点:
特征 | 说明 |
---|---|
多轮交互 | 上下文需保持,用户问题分阶段暴露 |
状态演进 | 工单从“新建”到“处理中”再到“已解决” |
多 Agent 分工 | 问题识别、答复生成、情绪判断、转人工等行为需协作 |
实时反馈 | 用户可能中断、追加、修改请求 |
✅ 系统架构目标:构建一个“多轮对话理解 + 工单流转 + 状态闭环”的客服 Agent 系统
🔧 Agent 角色设计
Agent | 角色 | 功能 |
---|---|---|
UserInputAgent | 对话接入 | 接收用户输入,处理多轮历史上下文 |
IntentClassifier | 意图分类 | 判断用户请求类型,标记业务场景 |
QAAgent | 回答生成 | 检索知识库或生成答案 |
SentimentAgent | 情绪识别 | 识别是否需要转人工 |
RouterAgent | 流转控制 | 根据状态跳转至人工或归档 |
LogAgent | 日志记录 | 工单内容写入 + 标签标记 + 质量打分 |
📦 task_state 示例结构(简化)
{
"user_input": "我的订单没收到也没人联系我怎么办",
"agent_outputs": {
"IntentClassifier": {"intent": "订单未配送"},
"QAAgent": {"answer": "很抱歉,请提供订单号,我们将尽快处理"},
"SentimentAgent": {"anger": 0.8},
"RouterAgent": {"action": "转人工"}
},
"status": "处理中",
"trace": [...]
}
✅ 对话状态管理机制
使用 session_context
+ task_state
双结构:
session_context
保存用户对话历史task_state
保存结构化状态流转
支持追加模式:
{
"session_context": [
{"role": "user", "content": "..."},
{"role": "agent", "content": "..."},
{"role": "user", "content": "那到底什么时候能到货"}
]
}
✅ Prompt 控制(IntentClassifier 示例)
你是一个意图识别智能体,请根据以下用户对话内容判断用户的诉求。
历史对话:
{{session_context}}
当前输入:
{{user_input}}
请输出如下结构:
{
"intent": "订单查询 / 投诉 / 售后 / 咨询 / 其他",
"confidence": 0.92
}
✅ 客服流程图结构(简化)
✅ 多轮触发机制(按轮次重构行为路径)
系统可设定:
- 每三轮对话重新分类意图
- 情绪值超过阈值自动转人工
- 未匹配答案三次则触发自定义应答 + 人工兜底
✅ 工单归档与审计
每轮会话结束后,写入:
- 工单 ID + 用户信息 + 问题类型 + 处理方式
- QA 输出 + 情绪值 + 是否转人工 + 对话评分
- 可由 LogAgent 汇总成 JSON / Markdown / 接入企业日志系统
📦 示例输出:
{
"ticket_id": "tk-20250423-001",
"intent": "投诉",
"final_response": "请放心,我们已安排客服专员联系您处理",
"transferred": true,
"anger_score": 0.83
}
📌 本系统适用于:
- 客服对话系统智能接入(SaaS / 企业服务)
- 工单处理自动化
- 多轮信息收集 × 多 Agent 状态协同
- 业务流程闭环与客服质量评估体系
六、总结:如何构建一个企业级 Agent 工作流系统?
✅ 三个场景,一种抽象
尽管我们讲解了三个看似不同的业务流程场景:
- 审批流:结构化表单 × 多级判断 × 合规审核
- 报表流:数据对齐 × KPI 提取 × NLP 总结 × 审核输出
- 客服流:多轮对话 × 意图分类 × 情绪判断 × 工单归档
但它们本质上都可以被抽象为以下统一模型:
输入(多模态 / 多轮) → 状态管理 → Agent 触发 → 工具执行 → 状态更新 → 路径跳转
✅ 通用流程型 Agent 系统架构
模块 | 功能说明 |
---|---|
🧩 FlowSchema | 用结构化 DSL 定义流程节点、跳转规则、终态判定 |
🧠 FlowEngine | 基于状态 + Agent 输出判断流程走向,驱动任务推进 |
🎭 AgentRegistry | 将多个 Agent 与流程节点绑定,封装为角色能力体 |
🔧 ToolRegistry | 所有工具调用都由注册中心管理,解耦实现与调度 |
📦 task_state | 当前任务状态结构,驱动行为、注入上下文、管理结果 |
📜 task_trace | 执行日志 + 多版本 + 回放能力,支持审计与复盘 |
🔁 ReplaySystem | 执行回放 × 多版本对比 × 行为 patch × critic 评估 |
✅ 特征提炼:流程型 Agent 应系统具备六大能力
能力 | 表现 |
---|---|
状态可控 | 每一阶段输入输出结构化,行为路径透明 |
流程可配置 | DSL 控制流程图,支持条件跳转、路径替换 |
Agent 可插拔 | 每个节点可更换 Agent 实现,行为版本可切换 |
工具解耦 | 工具调用由 ToolRegistry 统一封装,支持多语言、多平台执行 |
Prompt 模板化 | 每个行为可结构化定义 prompt + variable 映射 |
多模接入 | 可支持图像、文本、语音、表单等多模态输入与并发处理 |
✅ 构建建议(工程视角)
项目建议 | 描述 |
---|---|
流程版本控制 | 每次流程 DSL 变更都有版本号,trace 绑定版本号 |
多角色协作机制 | 使用协作图谱或 agent graph 表示 Agent 间依赖与调用链 |
日志与审计闭环 | 所有行为落盘,支持后期检索、对账、复盘 |
Prompt-DSL-Tool 解耦 | Prompt 与 DSL 与 Tool 三者解耦,支持多场景复用 |
用户行为轨迹 | 客户行为 × Agent 决策路径 × 输出内容统一归档分析 |
✅ 典型落地场景
- 报销审批 × 合同审核 × 招聘流程 × 报表生成 × 工单处理 × 客服对话
- 每一类任务都可以用统一框架复用:FlowSchema × Agent × ToolChain × State
🧠 一句话收尾
企业级 Agent 系统,不能停留在对话,而应进化为“智能流程编排系统”:它由结构驱动、由角色执行、由行为追踪、由状态控制,是下一代数字化业务的操作系统。
🌟 如果本文对你有帮助,欢迎三连支持!
👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新
写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。