Prompt 工程师岗位能力体系构建实战:企业级胜任力模型、评估指标与培养机制全流程解析

Prompt 工程师岗位能力体系构建实战:企业级胜任力模型、评估指标与培养机制全流程解析

关键词

Prompt 工程师、能力模型、岗位胜任力体系、评估指标体系、大模型工程实践、PromptOps、AI 人才培养体系、Prompt 能力雷达图、企业岗位级别定义、大模型落地人才结构

摘要

随着大语言模型在企业场景中的快速落地,Prompt 工程师这一新兴岗位逐步走向核心技术链条。但企业在实际推进过程中,常面临岗位职责不清、能力评估模糊、成长路径断层等问题,导致团队建设效率低下、Prompt 质量难以标准化。本文基于数家 AI 中台与 LLM 项目实战经验,系统构建一套面向 Prompt 工程师的岗位胜任力模型,涵盖通用能力地图、等级划分框架、评估指标体系与培养机制落地策略,帮助企业构建稳定、可复制、可量化的 Prompt 能力体系,为大模型工程化团队搭建提供结构化支撑。


目录

  • 第一章 岗位角色演化背景与企业建设动因分析
  • 第二章 Prompt 工程师职责边界与核心能力解构
  • 第三章 岗位等级模型设计:从实习到专家的五级能力分层
  • 第四章 Prompt 工程能力指标体系构建:技术 × 认知 × 交付三轴雷达
  • 第五章 胜任力评估机制设计与项目化验证路径
  • 第六章 企业人才培养机制与学习路径体系搭建实践
  • 第七章 常见组织落地问题与治理策略建议
  • 第八章 从岗位到体系:构建企业级 PromptOps 能力中台

第一章 岗位角色演化背景与企业建设动因分析

在大语言模型(LLM)逐步走向企业核心生产系统的背景下,Prompt 工程不再是早期科研探索中的“技巧性任务”,而是贯穿 AI 系统设计、应用集成、交付质量与合规治理的基础工程能力。随着 PromptOps 工程链逐渐成熟,企业对 Prompt 工程师的岗位能力提出了系统性要求,涉及语言建模理解、任务建模抽象、Prompt 模板结构设计、评估与迭代能力等多个维度。


1.1 岗位角色从“辅助工程”向“中枢能力”转变

在实际工程体系中,Prompt 工程师的岗位职责逐渐从“交互调优”发展为“结构驱动系统行为”的关键角色:

阶段角色定位代表任务
初始阶段模型调用协作者负责编写提示词、观察结果、调整输出
成长阶段任务建模与场景设计师抽象业务目标,构建 Prompt 模板与角色设定
中枢阶段系统行为控制者与质量责任人驱动多模型响应链、策略控制、审计路径设计

该转变意味着企业需要为 Prompt 工程师明确界定职责边界,设置清晰的能力分级标准与评价机制。


1.2 企业推动岗位体系建设的四大核心动因

从项目经验看,企业推进 Prompt 工程师能力体系建设,主要由以下四个问题驱动:

  1. Prompt 交付质量不稳定

    • 不同人设计的 Prompt 风格差异大,难以统一评估;
    • 缺少结构化设计规范与自动化评估体系。
  2. 工程与产品接口协作困难

    • Prompt 构造中夹杂产品语义、模型结构语义与技术限制;
    • 无标准任务定义路径,协作界面模糊。
  3. 能力发展路径缺失

    • 岗位人员多由产品 /运营 /算法转型而来,成长路径断层;
    • 无可追溯的晋升能力模型与项目积累框架。
  4. 组织扩展困难,经验不可复用

    • Prompt 编写依赖经验积累,知识沉淀困难;
    • 项目重用性差,影响团队扩展与能力复制。

以上问题共同推动企业建立标准化、评估化、路径化的 Prompt 工程能力体系,作为大模型系统可持续运行的重要基础模块。


第二章 Prompt 工程师职责边界与核心能力解构

要构建岗位胜任力模型,首要任务是明确定义 Prompt 工程师在企业大模型系统中的“职责边界”与“核心能力域”。这一过程不仅有助于与算法、产品、前端等角色划清接口责任,也为能力图谱建模与绩效评估奠定基础。


2.1 岗位职责边界定义(Job Scope)

根据典型工程团队实践,Prompt 工程师在项目中一般承担以下职责:

职责领域具体任务示例
场景建模将业务需求转化为模型可理解的任务抽象
Prompt 构造设计 Prompt 模板结构、变量注入机制、任务链路组织方式
质量调优跟踪模型输出效果、错误分类、Prompt 微调与版本迭代
数据配合配合数据工程师构造 Few-shot 样本,组织训练/评估样本集
评估与分析编写 Prompt 评估脚本,统计输出质量指标,如 BLEU / Pass@1
风控与合规编写 Prompt 审计规则,控制输出范围、加注安全提醒

Prompt 工程师不直接管理模型参数调优,不负责前端实现与产品交付落地,但需理解其上下游逻辑与依赖结构。


2.2 核心能力域划分与能力结构图

企业实践中,Prompt 工程师的能力结构可分为以下五大能力域:

能力域描述
任务建模能力能将非结构化业务场景抽象为可执行 Prompt 指令链路
模板设计能力掌握不同任务类型的 Prompt 结构构造方法,如问答、分类、总结等
语言控制能力理解模型语言偏好、语义收敛特征、输出模式与潜在偏差控制方法
输出评估能力能构建自动评估体系,衡量 Prompt 效果并持续优化
PromptOps 能力掌握 Prompt 管理工具、模板版本控制、调度系统与可视化接口设计能力

各能力域下应进一步细化一级指标与二级行为标准,形成可测、可训、可评估的能力雷达模型。


2.3 Prompt 工程师与相关角色能力差异对比

岗位角色专长方向与 Prompt 工程师区分点
算法工程师模型结构、训练流程更关注模型优化与参数训练,不直接设计语言结构
数据标注工程师样本组织、标签体系更偏向数据组织与标注规范,不关注 Prompt 控制语言策略
产品经理业务流程、用户需求不负责模型行为路径控制,但与 Prompt 工程师紧密协作设计
LLM DevOps系统部署、服务运行负责模型上线与资源调度,不涉 Prompt 设计逻辑

Prompt 工程师处于“任务控制逻辑”与“语言行为结构”中枢,其能力是构建 LLM 系统稳定性与可控性的关键连接层。


第三章 岗位等级模型设计:从实习到专家的五级能力分层

在企业级大模型团队建设中,Prompt 工程师的能力发展路径必须具备明确分级标准,便于团队管理、绩效考核与人才成长规划。岗位等级模型应覆盖从初入门者(实习/初级)到高阶专家(负责系统治理与标准制定)的全链路能力阶段,形成横向对齐、纵向晋升的完整闭环。


3.1 分级模型结构设计总览

结合多家 AI 中台与 LLM 平台型组织的工程实践,Prompt 工程师能力等级可划分为五级:

等级代号职级名称角色定位说明
P0实习级掌握基础任务结构,能够独立撰写基本 Prompt
P1初级工程师能支持标准场景构造、完成模板复用和调试
P2中级工程师可独立主导任务建模、模板设计与迭代优化
P3高级工程师具备体系化能力,承担跨场景模板治理与策略规划
P4专家级构建能力框架与工具链,驱动企业 PromptOps 战略

每一级别均应绑定具体行为标准与典型交付物,形成“行为 + 成果”双维度评估体系。


3.2 分级能力对比矩阵(核心能力域 × 等级)

能力域P0 实习P1 初级P2 中级P3 高级P4 专家级
任务建模能力理解任务定义能构造 Prompt独立设计复杂任务链主导任务建模策略标准化主导跨团队任务抽象体系构建
模板设计与复用基本模仿熟练修改现有模板构建模块化 Prompt 模板主导多场景模板统一策略推动 Prompt 模板中台治理方案
输出评估与调优观察输出效果能调优输出构建 Prompt 评估流程建设自动化评估机制建立跨项目统一评估平台
多轮交互与状态控制能维护基础上下文构建状态感知式 Prompt组织多轮问答链路标准建立统一对话任务建模规范
PromptOps 能力能使用管理工具管理模板版本与调度设计内部工具与服务流程定义企业级 PromptOps 体系

3.3 不同等级岗位交付标准参考

等级典型交付物举例
P0单轮 Q&A Prompt 示例文档、微调样本采集表、输出记录分析表
P1基础任务 Prompt 模板、提示结构注释文档、错误分类报告
P2多轮任务 Prompt 模板集、版本演进记录、指标评估脚本
P3模板治理手册、评估体系工具、项目级风险提示策略
P4企业级 Prompt 能力模型白皮书、PromptOps 服务框架设计

等级评估应基于工作过程产出,而非“输出个数”或“是否调试过大模型”这种粗糙指标。


第四章 Prompt 工程能力指标体系构建:技术 × 认知 × 交付三轴雷达

为了实现标准化评估与晋升认证,Prompt 工程师岗位需具备系统性能力指标体系,确保不同组织、不同项目、不同团队之间具备一致性认知。我们推荐将能力评估维度划分为三大类:技术能力、认知能力与交付能力,并构建五级细化评分模型与行为锚点。


4.1 指标体系结构总览

能力维度子项能力点评分方式
技术能力Prompt 构造技巧、结构化输出、模板调试案例代码、模板覆盖率、评估指标
认知能力任务建模深度、语义理解力、上下游对接访谈问答、项目复盘报告
交付能力工程交付标准化、文档完整性、评估工具建设工具产出、协作反馈、PR 记录

评分建议采用五级行为锚点法(L1~L5),每级绑定明确行为指标。


4.2 行为锚点示例:Prompt 模板设计能力

评分级别行为标准说明
L1能理解模板结构,复用已有模板完成任务
L2可独立构造单轮任务 Prompt,满足任务意图
L3能构建多轮交互任务模板,控制上下文与输出结构
L4主导项目级模板架构设计,考虑版本管理、复用结构与通用性
L5设计组织级模板治理框架,制定企业内部 Prompt 规范并赋能团队成员成长

4.3 评分路径与多维反馈机制建议

建议企业内部使用以下机制组合实现能力评估闭环:

  1. 项目复盘驱动:每个大模型相关交付节点必须输出 Prompt 构造说明文档与评估脚本;
  2. 任务评分体系联动:将指标体系接入 Jira / TAPD / 项目工具中作为交付结果结构项;
  3. 多评主体机制:引入“自评 + 项目负责人评 + 技术主管复核”三方联合机制;
  4. 成长路线绑定晋升路径:将评估结果与等级晋升、人才地图和培训路径绑定;

通过搭建横向分维、纵向分级的能力体系模型,企业可有效推动 Prompt 工程师岗位的制度化建设、绩效驱动、能力积累与组织成长闭环,进一步推动大模型系统在各类业务线中的稳定可控落地。

第五章 胜任力评估机制设计与项目化验证路径

建立岗位能力模型的最终目标是服务于可执行的“评估体系”与“人才识别机制”,不仅为团队配置、晋升评审、项目分工提供依据,更构成企业内部 Prompt 工程师能力发展的数据闭环。评估机制需覆盖静态能力测评、动态项目表现量化与交付物结构化打分三大路径。


5.1 多维度评估体系设计

推荐构建三层互补的评估模型:

评估类型描述常用方法
静态能力评估针对岗位能力模型的结构化评分,按等级打分行为锚点评分、结构化问卷
动态任务表现基于实际项目交付表现进行评估项目复盘、协作反馈、交付物审阅
成果输出结构化对 Prompt 模板、评估脚本、调优流程等实际产出评分Code Review、产出可读性审查

三者结合,可避免评估“表面化”或“模板化”,提升绩效机制公正性。


5.2 Prompt 项目化评估示例设计

以一个真实 Prompt 工程师参与的任务为例:

场景背景:

构建一个用于企业内 FAQ 智能问答的多轮对话系统,要求支持上下文记忆、文档检索增强与合规控制。

评估内容与评分点:
模块评估维度评分参考
Prompt 模板设计结构规范性、变量复用、上下文控制是否具备合理分段、变量命名统一、Context 注入机制
多轮任务链设计状态机合理性、跳转逻辑任务 Slot 结构是否完整,轮次控制是否合规
输出效果控制风险提示结构、fallback 控制是否具备低置信度处理逻辑,是否封装拒答机制
模板可读性与维护注释规范、格式统一性是否标明 Prompt 版本号、输出要求、接口参数说明
评估脚本自动化覆盖率、测试场景全面性提供 pass@1 分析、BLEU 分数、人工审阅匹配度统计等

最终项目可打分量化并分等级归档,用于绩效与晋升依据。


5.3 能力成长周期模型与数据积累机制

为支持组织级人才识别与成长管理,应将 Prompt 工程师能力成长路径结构化建模,建议如下:

阶段数据积累项工具支持建议
入职适配期模板案例拆解、模板复用任务建立 Prompt 学习库 / 任务列表系统
快速成长期项目产出量、评估脚本贡献度与 GitLab / TAPD / 飞书绩效对接
稳定贡献期模板治理策略、评审参与度、知识库建设与版本管理系统、评审系统联动
能力跃升期PromptOps 工具主导、培训课程设计对接文档平台与课程管理系统

最终形成从“能力识别”到“能力反哺”的完整闭环。


第六章 企业人才培养机制与学习路径体系搭建实践

Prompt 工程师作为融合语言建模、产品理解与系统工程的复合型岗位,其能力成长具有高度非线性特征。企业需构建与岗位等级模型、能力指标体系相匹配的系统性人才培养路径,包括课程体系、项目训练机制、内训平台建设与社区运营策略,推动人才高质量发展与组织能力内生化。


6.1 Prompt 工程师通用学习路径结构设计

基于实际案例建议采用“理论基础 → 模板实战 → 框架治理”三级路径:

阶段学习主题模块推荐学习方式
基础认知LLM 语义生成机制、Prompt 类型分类、评估方法公开课、内部培训、书籍阅读
模板能力强化任务建模技巧、多轮链路设计、合规控制机制项目实践 + 代码 Review + Pair 编程
系统治理提升PromptOps 架构、模板版本管理、多模型路由结构工具研发参与 + 框架设计输出

每阶段配套测试机制、挑战任务与 mentor 支持机制,确保路径可执行、结果可见。


6.2 培养机制落地的关键支持系统

支撑模块功能描述工程实现建议
Prompt 学习平台提供模板库、任务库、错题集、结构化学习路径基于 Lark Base / Notion 搭建
模板评审机制定期开展 Prompt Review,提升质量统一性周会 + 飞书文档协同记录
项目锤炼机制将真实项目中非核心链路交由 P1/P2 实践,促进成长Jira + GitLab 权限辅助管理
内部认证体系结合等级模型建立认证任务与评估流程,打通晋升路径对接 HR BP + 培训平台 + 项目复盘系统

通过平台+流程+文化机制组合输出,企业可构建可持续成长的 Prompt 工程师梯队。


通过将胜任力评估机制项目化落地,并构建完整的学习成长与人才培养路径,企业可真正完成从“岗位定义”到“体系能力复制”的闭环,保障大模型项目实施质量、工程稳定性与人才供给能力。

第七章 常见组织落地问题与治理策略建议

尽管企业已经构建了较为清晰的 Prompt 工程师岗位模型和能力评估体系,但在实际落地过程中,仍普遍面临机制落地断层、能力评估碎片化、产出标准不统一等一系列共性问题。本章将基于多个企业内 Prompt 工程团队建设的真实案例,梳理出最具代表性的六类治理问题,并提供对应的工程化解决策略,确保岗位体系真正转化为组织能力。


7.1 问题一:岗位职责与边界模糊,角色重叠严重

典型表现:

  • 产品经理兼做 Prompt 编写,结果交付质量不稳定;
  • 算法工程师随手调试 Prompt,缺少版本控制与责任归属;
  • Prompt 模板未纳入工程交付规范,成为“隐形产出”。

治理建议:

  • 在项目结构中明确 Prompt 工程师的职责清单与交付清单;
  • 将 Prompt 模板纳入 Git 仓库管理,按版本控制;
  • 所有 Prompt 调用路径需在发布系统中登记,支持日志审计。

7.2 问题二:能力评估与绩效评价脱节,激励机制不匹配

典型表现:

  • 评估停留在“是否调优过 Prompt”、“是否提交了模板”;
  • 项目交付质量高的人员无实际晋升路径或激励标准;
  • 岗位晋升与技能成长之间缺少对齐机制。

治理建议:

  • 将能力模型绑定绩效权重指标,如模板通过率、评估指标提升幅度;
  • 引入晋升能力对照表,明确“晋升路径=能力成长+交付能力+项目表现”;
  • 提供 Prompt 工程师内推认证机制,由项目 Leader 反向推荐优秀成员。

7.3 问题三:输出质量缺乏统一评估标准,结果可控性差

典型表现:

  • 不同工程师输出风格差异大,结果可维护性低;
  • 同一任务多版本 Prompt 共存,无法收敛统一结构;
  • 缺少“输出合规性”、“结构完整性”的系统性评估指标。

治理建议:

  • 设立 Prompt 模板评审制度,采用评分卡结构打分;
  • 所有模板需包含:上下文控制逻辑、输出格式、样例数据等结构项;
  • 建立 Prompt Linter 工具,静态分析 Prompt 编写质量并自动打分。

7.4 问题四:模板知识沉淀断层,难以复用迁移

典型表现:

  • 优秀模板散落在历史 PR 或成员私有目录中;
  • 新入职工程师无法快速上手模板结构;
  • 团队在不同业务线重复构建同类任务 Prompt。

治理建议:

  • 建立 Prompt 模板中台,支持按任务类型、业务线、用途标签分类;
  • 为每个模板附加版本号、修改人、评估日志与使用建议;
  • 通过导入/导出机制支持多项目复用与迁移。

7.5 问题五:工具链不足,工程链路断裂

典型表现:

  • 模板构建无专用 IDE,缺乏结构提示与自动补全;
  • 模板部署流程依赖人工操作,难以回滚与审计;
  • 模板评估脚本不具备通用性,无法大规模执行回归测试。

治理建议:

  • 搭建 Prompt IDE 工具,支持结构化模板开发、变量提示与语义检查;
  • 将模板构建、上线、灰度与评估纳入 CI/CD 工程流水线;
  • 构建通用 Prompt 回归测试框架,支持多任务、多模型、多版本验证。

7.6 问题六:组织文化支持不足,Prompt 能力成长动力缺失

典型表现:

  • 团队未设定明确的 Prompt 工程成长路径与文化氛围;
  • 缺乏日常分享、评审、挑战等机制,工程师成长单点依赖项目机会;
  • Prompt 能力在绩效考核中未被视为关键产出。

治理建议:

  • 推出 Prompt 工程师内部认证体系,激励能力成长;
  • 建立月度“最佳模板评审”、“Prompt 改进挑战”等成长机制;
  • 在工程晋升与项目负责人评选中纳入 Prompt 能力维度。

通过聚焦职责定义、评估机制、模板标准、工具链与组织支持等五大核心维度,企业能够在制度层面解决 Prompt 工程能力“知易行难”的落地障碍,为团队建设高效、可持续的人才机制与工程治理体系提供保障。


第八章 从岗位到体系:构建企业级 PromptOps 能力中台

Prompt 工程师岗位建设只是起点,真正可规模化的能力体系建设,必须向上演进为组织级 PromptOps 中台。PromptOps 是对模型行为进行结构化建模、版本治理、服务编排与策略调度的完整系统,旨在将 Prompt 由“个体经验”转化为“组织能力”,实现 Prompt 能力平台化、服务化与工程化。


8.1 PromptOps 的系统定义与组成模块

企业级 PromptOps 中台应包含以下核心模块:

模块名称功能说明
模板治理中心提供 Prompt 模板结构规范、版本控制与状态管理
调度引擎根据任务类型、用户权限、模型版本进行策略调度
模板评估系统自动化运行评估样例、记录评估指标与质量趋势
安全与合规中心控制输出边界、审计记录、敏感词检测等合规功能
运维与审计模块支持上线、灰度、回滚、监控与日志链生成

8.2 PromptOps 服务化能力设计

PromptOps 应为下游系统提供 API/SDK 接口,实现多端统一调用:

  • /v1/prompt/generate:按任务类型、版本号、输入变量构建最终 Prompt;
  • /v1/prompt/trace:返回对应生成请求的 trace_id、版本链、依赖信息;
  • /v1/prompt/evaluate:返回最近版本的自动评估得分、置信区间、覆盖情况;
  • /v1/prompt/deploy:支持版本发布、回滚与灰度策略设置;

8.3 PromptOps 能力中台建设路线图

阶段目标定位关键里程碑
1. 基础治理模板结构统一、评审机制上线模板仓库、版本控制系统
2. 能力平台模板调用服务化、评估体系上线Prompt API 服务、评估引擎、规则管理中心
3. 中台化跨业务线、多项目复用、与 MLOps 联动PromptOps 控制台、权限管理、多模型路由系统

通过将 Prompt 工程能力上升为组织级中台建设,企业可真正实现 Prompt 能力结构化沉淀、模板服务化交付与策略闭环治理,为大模型系统在各业务场景中的规模化应用提供可控、高效、可追溯的运行基础。

至此,企业级 Prompt 工程师岗位能力体系建设与 PromptOps 平台化落地路径完成闭环构建。

个人简介
在这里插入图片描述
作者简介:全栈研发,具备端到端系统落地能力,专注人工智能领域。
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!

专栏导航

观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
Agentic AI架构实战全流程:一站式掌握 Agentic AI 架构构建核心路径:从协议到调度,从推理到执行,完整复刻企业级多智能体系统落地方案!
云原生应用托管与大模型融合实战指南
智能数据挖掘工程实践
Kubernetes × AI工程实战
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。


🌟 如果本文对你有帮助,欢迎三连支持!

👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值