Dual Pixel 技术详解:相位对焦与景深采集的工程原理与应用实践
关键词:
Dual Pixel、相位检测对焦(PDAF)、景深估计、对焦速度、双像素结构、对焦精度、双摄融合、对焦追踪、自动对焦算法、景深图重建
摘要:
Dual Pixel(双像素)技术作为现代手机影像系统中提升对焦速度与景深感知能力的关键创新方案,已成为旗舰 Sensor 的标配之一。其本质是将每个像素水平划分为两个独立感光单元,使 Sensor 在不增加额外模组的前提下具备全像素相位检测(All Pixel PDAF)与初步景深采集能力。本文基于多个工程平台(如 Sony IMX989、Samsung GN2、Omnivision OV60A)的实际部署案例,系统讲解 Dual Pixel 的结构原理、对焦机制、ISP 解算路径以及在 AI 景深、视频追焦中的综合表现,并结合调试难点与平台适配经验,提供详尽的实战参考。
目录:
第 1 节:Dual Pixel 技术原理与发展演进
- 从 PDAF 到 Dual Pixel:对焦方案的演进路径
- Dual Pixel 像素结构与采样逻辑解析
- 与标准 PDAF(分布式相位检测)的结构差异
第 2 节:双像素信号分离与相位检测机制
- 左右子像素的独立成像路径
- 视差计算与相位检测对焦(PDAF)原理
- 信号质量、对焦准确性与低光场景下的策略补偿
第 3 节:全像素对焦系统(All PDAF)对实时性的影响
- 全帧检测与 ROI 区域聚焦的调度切换
- 工程实测:对焦速度、锁焦稳定性与追踪响应
- ISP 对 Dual Pixel 信号的解析能力比较(Qualcomm vs MTK vs Exynos)
第 4 节:景深信息的采集机制与 DoF 重建初探
- 双像素视角差距与立体成像原理
- 粗景深图生成流程:像素位移图(Disparity Map)提取
- 在 AI 模糊模拟、背景分离中的实际应用效果
第 5 节:Dual Pixel 在视频拍摄中的追焦优化路径
- 连续对焦策略:CAF(Continuous AF)与 Dual Pixel 协同机制
- 移动目标跟踪下的 ISP 动态 ROI 调度
- 实拍场景:运动主体追焦失效案例与补偿机制
第 6 节:不同厂商 Dual Pixel 实现差异与选型建议
- Sony IMX989 vs Samsung GN2 vs OV60A 架构分析
- 对焦准确性 vs 景深感知能力的参数权衡
- 多 Sensor 系统中 Dual Pixel 模组的搭配路径
第 7 节:调试实战分享:对焦失败、边缘漂移与低光对策
- PDAF 信号异常与失焦图像排查思路
- 低光场景对焦漂移与 Dual Gain HDR 的耦合影响
- ISP 参数调优路径(AF Trigger、AF ROI、Focus Window)
第 8 节:未来趋势:全向对焦、多维景深与 AI 融合演进
- Dual Pixel Pro / Quad Pixel PDAF 的架构趋势
- 全向对焦(Omni-direction PDAF)在结构层的实现挑战
- AI 辅助景深还原、人物抠像与光斑模拟能力的协同发展路径
第 1 节:Dual Pixel 技术原理与发展演进
从 PDAF 到 Dual Pixel:对焦方案的演进路径
早期移动设备中的自动对焦普遍采用对比度对焦(Contrast AF)机制,通过图像清晰度变化判断焦点位置。但该方法存在对焦速度慢、低光下不稳定等严重缺陷。随着硬件演进,相位检测自动对焦(PDAF)被引入到手机影像系统中,成为提升对焦效率的关键方案。
传统 PDAF 在 Sensor 上集成少量专用相位检测像素(一般每隔数百像素设置一个 PDAF 单元),这些像素对光线方向具备一定敏感性,能够判断景深信息并引导对焦。但这种分布式 PDAF 架构受限于像素点稀疏与分布密度,容易在图像边缘、暗部、低对比度区域失效,导致“拉风箱”等现象,特别在视频拍摄与运动场景下尤为明显。
Dual Pixel 技术由 Canon 首次在 DSLR 影像系统中提出,并在移动平台上被 Sony、Samsung 等 Sensor 厂商快速部署。其核心优势是将每一个像素划分为两个感光单元(Sub-Pixel),左右子像素分别独立读取成像信号,从而在Sensor 的每一个像素点上都具备相位检测能力,实现所谓的 “All Pixel PDAF”。
这种设计不仅提升了对焦速度,也极大增强了对焦的稳定性与空间覆盖范围,使得弱光、人像、运动等复杂场景下的对焦体验显著优化。
Dual Pixel 像素结构与采样逻辑解析
Dual Pixel 架构的基础是将传统单一感光单元(Pixel)水平分为左右两个子像素(Left/Right Photodiode),两者共享一个微透镜(Microlens)与颜色滤光片(CFA),但在电路层面具备独立的电荷积累与读出路径。
在正常成像模式下,左、右子像素信号经过加权合并形成一个完整的图像像素输出;而在对焦模式(AF Mode)下,ISP 可调用左右子像素各自的信号用于视差计算,进而评估当前对焦是否准确。
这种结构在硬件层要求非常高:
- 微透镜需高精度对准,避免光线倾斜时进入相邻像素;
- 光电二极管之间需严格对称设计,保证感光响应一致性;
- Sub-Pixel 的模拟读出路径必须具备一致性增益和低噪特性,以避免视差误判。
从信号处理角度看,Dual Pixel 允许全图像区域具备对焦能力(All Pixel PDAF),可大幅提升智能曝光、实时对焦、运动追踪等任务的响应速度与准确度。
与标准 PDAF(分布式相位检测)的结构差异
Dual Pixel 与传统 PDAF 的核心差异在于:
维度 | 传统 PDAF | Dual Pixel |
---|---|---|
对焦像素占比 | 约 3-10%(分布式) | 100%(全像素) |
像素结构 | 特定区域设置相位检测像素(一般无彩色滤光片) | 每个像素水平分成两个子像素 |
对焦精度 | 中等,边缘失效明显 | 高,全帧追焦能力强 |
低光表现 | 弱光容易失焦 | 配合 AI/ISP 补偿后稳定性好 |
景深感知能力 | 较差,需双摄或其他模组补充 | 可采集基础景深视差信息 |
此外,标准 PDAF 存在部分像素无法用于图像合成的问题(Color Aliasing),而 Dual Pixel 因每个像素本身就包含成像功能,几乎不影响图像质量,具备更高的系统一致性。
在工程实践中,Dual Pixel 更适合用于旗舰主摄模组,特别是在对对焦速度和景深分离能力要求极高的场景(如 AI 视频、短焦人像、大光圈背景虚化等)。
第 2 节:双像素信号分离与相位检测机制
左右子像素的独立成像路径
在 Dual Pixel 架构中,每一个像素包含两个对称布置的光电二极管(Photodiode),分别对应左侧和右侧的视角。当一个物体处于镜头焦点位置时,左右子像素会接收到几乎一致的图像信息;若物体处于焦外区域,两个子像素所接收到的光线图案存在一定偏移,即产生视差。
这一结构在 Sensor 的模拟信号通道上表现为两组独立的电荷读出路径,通常被命名为 Left PDAF Channel 与 Right PDAF Channel。在 ISP 层,系统可以实时采集这两路信号,并进行视差分析。
其主要工作流程包括:
- AF Trigger 触发:用户半按快门或系统识别移动目标;
- ROI 区域采样:在感兴趣区域内提取一组 Dual Pixel Block;
- 图像位移匹配:左右图像信号执行块匹配(Block Matching)或梯度优化算法(如 SSD、NCC);
- 估算视差并生成调焦信号:通过匹配点位移量计算焦平面偏移量,驱动对焦马达进行调焦;
- 完成锁焦或进入 CAF 跟踪模式。
该机制对比对比度对焦大幅减少了因图像模糊而需要大量尝试的搜索过程,对焦速度和准确度均有显著提升。
视差计算与相位检测对焦(PDAF)原理
Dual Pixel 本质上是通过左右子像素之间的“图像位移”来估计物体距离,即所谓“相位差”检测。其核心公式如下:
Δ x = f ⋅ ( B Z ) \Delta x = f \cdot \left( \frac{B}{Z} \right) Δx=f⋅(ZB)
其中:
- Δ x \Delta x Δx 为两个子像素图像之间的位移(视差);
- f f f 为镜头焦距;
- B B B 为子像素间基线距离;
- Z Z Z 为物体距离(即焦点)。
对焦控制系统会通过比对子像素图像的最大相似位置,估算出 Δ x \Delta x Δx,从而判断焦点前后,并调整镜头模组至成像最清晰的位置。
这种方法不仅速度快,而且具备天然的距离感知能力,在景深估计与人物边缘抠图等领域也具有较强的可扩展性。
信号质量、对焦准确性与低光场景下的策略补偿
尽管 Dual Pixel 架构理论上具备全帧对焦能力,但在实际应用中,仍需对信号质量进行控制与优化,尤其是在以下情境下:
- 弱光(<5 lux)场景:左右子像素采集信噪比下降,导致匹配失败,可通过引入辅助对焦灯或配合 ISP 的 AI AF 模型进行预测补偿;
- 低纹理场景:如白墙、天空等缺乏边缘信息区域,Block Matching 会出现匹配失败,此时 ISP 通常切换为对比度对焦或预设值跟踪策略;
- 高速运动目标:由于运动模糊带来图像拖尾,需启用帧间滤波(Temporal Denoise)与快速 ROI 更新策略提升对焦稳定性。
当前主流平台(如 Snapdragon 8 Gen3、Dimensity 9300、Exynos 2400)均支持 Dual Pixel 全通路的 RAW 数据采集与相位差解算,并配合 AI AF 算法提高复杂场景中的鲁棒性,已可实现<100ms 的锁焦速度和>90% 的对焦成功率。
第 3 节:全像素对焦系统(All PDAF)对实时性的影响
全帧检测与 ROI 区域聚焦的调度切换
传统 PDAF 模式中,由于相位检测像素只分布在成像区域的部分位置,系统需借助 ROI(Region of Interest)策略动态选取有效区域进行对焦测量。而在 Dual Pixel 架构下,由于每一个像素都具备独立的左右子像素通道,Sensor 本身就具备了“全像素对焦”(All PDAF)的基础能力。
这种能力支持 ISP 在以下两种调度模式间灵活切换:
- 全帧并行检测(Global PDAF):系统可实时扫描全帧视野,对画面中所有区域同步执行相位检测,尤其适用于 CAF(Continuous Autofocus)与视频追焦等连续运动场景,提升对焦连续性;
- 局部聚焦优化(ROI PDAF):针对图像中的目标区域(如人脸/眼睛/主体)动态调整测距窗口,结合 AE/AWB 权重策略提升聚焦精度与响应速度。
这两种调度模式常在实际产品中交替使用,例如:
- 启动相机预览时为全帧 CAF;
- 检测到人脸/手势/物体后进入 ROI 模式锁定;
- 视频录制过程中根据帧间移动自动切换检测区域。
配合 Dual Pixel 的信号采集,ISP 可对任意像素区域进行高精度视差估计,实现毫秒级级别的动态聚焦。
工程实测:对焦速度、锁焦稳定性与追踪响应
基于市场上典型平台的 Dual Pixel 实测数据显示,在普通光照条件(300 lux 以上)下,全像素对焦可带来极高的速度与锁定稳定性:
SoC 平台 | 传感器型号 | 单次对焦平均时延 | CAF 连续跟踪成功率 | 夜景锁焦成功率 |
---|---|---|---|---|
Snapdragon 8 Gen 3 | Sony IMX989 | 55–70 ms | >95% | >85%(配合 AI AF) |
MediaTek Dimensity 9300 | ISOCELL GN2 | 60–80 ms | >93% | >80% |
Exynos 2400 | OV60A | 65–85 ms | >90% | ~75%(依赖 ISP 优化) |
其中,锁焦速度不仅取决于硬件结构(如 Sub-Pixel 增益匹配度),也高度依赖于 ISP 的数据通路调度、信号噪声预处理与测距算法模型。
尤其在 CAF(连续对焦)场景下,全像素 PDAF 可更快速定位运动目标的视差变化并实时调整模组焦距,使画面主体始终处于清晰范围。例如在拍摄奔跑中的儿童、抓拍跳舞动作时,可显著减少拉风箱与焦点飘移的现象。
ISP 对 Dual Pixel 信号的解析能力比较(Qualcomm vs MTK vs Exynos)
不同 SoC 平台对 Dual Pixel 的支持深度与优化程度差异明显,主要体现在以下方面:
维度 | Qualcomm Snapdragon | MTK Dimensity | Samsung Exynos |
---|---|---|---|
RAW 支持 | 原始左右通道 RAW 分离,支持 ISP 前端融合 | 支持 RAW10/12 分离,部分平台带 AI 辅助 | 部分支持,全平台未统一标准 |
PDAF 通道 | 单独配置硬件通道,支持子像素增益匹配 | 软件模拟左右位移通道,低光补偿策略依赖 | PDAF 信号压缩后统一处理,低速时不稳定 |
对焦追踪能力 | 多 ROI CAF + 视频人眼锁定稳定 | 对焦速度快,但追踪距离略短 | 视频中断焦概率高,需配合软算法补偿 |
AI 融合能力 | 高度融合 Sensing Hub 与 ISP 任务队列 | 与 APU 协同调度,对焦与识别一体化 | AI 模块主要用于图像重建,对焦不深度融合 |
总体而言,Qualcomm 平台在 Dual Pixel 信号处理路径上最为完善,支持从 Sub-Pixel 读出、视差建模、ROI 跟踪到 AI 对焦调度的完整链路。MTK 在 ISP 软件调度与 AI 预测方面强势,追求效率最大化;Exynos 则偏重成像重建,PDAF 功能相对弱化。
第 4 节:景深信息的采集机制与 DoF 重建初探
双像素视角差距与立体成像原理
Dual Pixel 的每个像素包含左右两个光电二极管,它们分别接收来自微透镜不同位置的光线。因此在拍摄对象离开焦点位置时,左右子像素所记录的图像会呈现出轻微的视角偏差,这种差异被称为“视差”。
这种架构在本质上等同于一个微型双摄系统,具有立体视觉的先天特性。左右子像素的视差大小与物体的距离呈反比关系,可用于生成初步的景深图(Depth Map)。
相比传统的双摄景深采集,Dual Pixel 拥有以下优势:
- 不依赖外部模组,无需多摄同步;
- 景深分辨率接近图像分辨率本身,精度更高;
- 无需额外标定流程,易于算法快速集成。
但其也存在固有限制,如基线长度极小(约 1–2μm),导致对远景的深度分辨率有限,适用于人物背景、特写拍摄等近场景。
粗景深图生成流程:像素位移图(Disparity Map)提取
Dual Pixel 景深图生成主要依赖像素级位移计算流程,具体包括:
- 子像素图像采集:从 Sensor 获取左/右子像素图像;
- 块匹配/光流法提取视差:对左右图像执行匹配算法(如 Census Transform、Semi-Global Matching);
- 构建 Disparity Map:将每个像素的视差编码为灰度值,初步获得粗景深图;
- 边界/空洞优化:通过引导滤波、全变差(TV)正则化等算法修复边缘跳变与无纹理区域;
- 融合 RGB 信息:结合图像亮度/颜色增强景深图的结构感知。
该流程在硬件平台上由 ISP 或 AI 引擎加速完成,一般在 10–30ms 内可完成中等分辨率景深图的生成,适用于实时景深合成或背景虚化。
在 AI 模糊模拟、背景分离中的实际应用效果
目前主流手机品牌均将 Dual Pixel 景深采集能力集成到人像模式、视频背景虚化与 AR 抠像系统中。例如:
- 人像模式虚化:利用 Dual Pixel 景深图精准分割前景人物与背景,结合 AI 模糊引擎模拟大光圈成像效果;
- 视频实时背景替换:在视频通话或 Vlog 拍摄中实时生成景深图,结合绿幕算法实现虚拟背景;
- AR 空间映射:通过采集浅层景深实现物体空间感知,用于虚拟物体贴合或手势轨迹跟踪。
实测中,在人物距离相机 0.5–1.5 米范围内,基于 Dual Pixel 的景深图边缘精度可达 5~10 像素级,配合后端 AI 引擎可达 90%以上的分割准确率。但在景深差较小或光照不足场景下,视差噪声与结构误判问题仍需结合多帧融合与学习型优化模型提升鲁棒性。
第 5 节:Dual Pixel 在视频拍摄中的追焦优化路径
连续对焦策略:CAF(Continuous AF)与 Dual Pixel 协同机制
在视频拍摄场景中,追焦系统必须实现连续、高速、稳定的自动对焦响应。传统对比度自动对焦(CAF)虽具备一定灵敏度,但对变化的追踪目标响应迟缓,尤其在低光、复杂背景、主体遮挡等场景下,容易频繁失焦。
Dual Pixel 技术在此场景下的优势尤为显著:
- 每帧画面均可通过左/右子像素的视差信息快速判定当前是否处于对焦状态;
- 相较于对比度变化依赖,Dual Pixel 可以直接判断方向性对焦偏差(前对或后对);
- 在焦点偏离后,可在最短时间内控制马达反向运动,实现无“拉风箱”式调焦。
在 CAF 模式中,系统通常启用以下机制:
- 周期性低功耗测距:在不占用 ISP 主通路的情况下,持续读取 Dual Pixel 对焦结果;
- 追踪优先策略:优先识别主物体(如人脸/眼睛/主体),并为其分配对焦 ROI 区域;
- 微调焦点位移:每帧基于视差变化做细微焦距调整,保持图像始终在清晰范围内。
这种方案使 Dual Pixel 成为目前旗舰视频拍摄中不可替代的对焦主力。
移动目标跟踪下的 ISP 动态 ROI 调度
追焦成功的关键不仅在于 Dual Pixel 硬件本身,还依赖于 ISP 对 ROI(Region of Interest)的动态分配能力。在多目标、多运动路径场景下,系统需实时对焦目标位置进行更新:
- 目标识别:结合 AI 引擎检测画面中人物、宠物、车辆等对象;
- ROI 预测:根据目标历史运动轨迹预测下一帧可能位置,预调对焦窗口;
- ROI 提权策略:在人脸、眼睛等关键部位上提升对焦权重,增强对焦稳定性;
- 多 ROI 多任务并发:支持主目标优先锁定,次目标同步测距备用。
这一动态 ROI 系统需在每帧 33ms 的视频时间预算内完成调度、读取、预测与执行,要求 ISP 有强大的队列管理能力,通常由主控芯片的 ISP 协同 APU/NPU(AI 引擎)完成。
实拍场景:运动主体追焦失效案例与补偿机制
实拍中,即使采用 Dual Pixel 架构,也仍存在部分失败场景,典型如:
- 目标快速横向移动:由于 Dual Pixel 视差基线方向为水平,当主体快速左右移动时图像拖尾严重,视差信号失真;
- 强光/逆光场景:背景高亮导致对焦 ROI 被遮蔽,ISP 判定错误;
- 边缘滑出画面:当主体移出原 ROI 区域,系统未及时更新 ROI,产生追焦中断;
- 前景遮挡或反光:干扰元素进入 ROI 区域,导致焦点漂移或前景误锁。
针对上述问题,实际项目中可采用以下策略补偿:
- 开启 AI 目标识别优先级,对主目标增加帧间稳态滤波;
- 增强 ISP 中的 ROI 更新频率(例如每帧 1 次 → 每帧 3 次);
- 将 CAF 与 Touch-to-Track 功能结合,增强用户可控性;
- 利用 AI 景深估计联合 Dual Pixel 数据,在视差模糊时靠近粗景深图稳定对焦判断。
第 6 节:不同厂商 Dual Pixel 实现差异与选型建议
Sony IMX989 vs Samsung GN2 vs OV60A 架构分析
当前市场上主流支持 Dual Pixel 的旗舰 Sensor 包括 Sony IMX989(1英寸)、Samsung GN2(1/1.12英寸)、Omnivision OV60A(1/2.8英寸)。各家在 Dual Pixel 架构上的实现存在差异,影响对焦表现和景深输出精度:
型号 | 像素尺寸 | Dual Pixel 类型 | 像素结构 | 对焦精度 | 景深精度 |
---|---|---|---|---|---|
IMX989 | 1.6μm | Dual Pixel Pro(全向) | 水平 + 垂直分离 | ★★★★★ | ★★★★☆ |
GN2 | 1.4μm | Dual Pixel AF | 水平分离 + AI 配合 | ★★★★☆ | ★★★☆☆ |
OV60A | 0.61μm | Dual Conversion Gain + DP | 低噪通路优化 | ★★★☆☆ | ★★☆☆☆ |
IMX989 由于采用全向 Dual Pixel Pro 架构,支持水平方向与垂直方向的相位差分析,在斜向运动目标或 AI 景深建模中具备明显优势。
GN2 则在硬件基础上叠加了 AI 图像分割引擎,虽硬件视差较弱,但软件追焦表现不俗,视频 CAF 表现接近 Sony。
OV60A 主要用于副摄或前摄模块,体积限制下 Dual Pixel 基线较短,性能受限。
对焦准确性 vs 景深感知能力的参数权衡
在实际项目选型中,应权衡对焦与景深的需求:
- 追求锁焦速度、拍摄稳定性(如视频、抓拍):优先选择像素大、基线长的 Dual Pixel Sensor,如 IMX989;
- 场景中对景深/背景虚化有较高需求(如人像模式):选择支持全向 Dual Pixel + 景深调优 ISP 的平台;
- 次要模组/低功耗场景(如副摄、广角):可考虑低成本 OV60A 等 Dual Pixel Lite 架构方案。
特别要注意 Dual Pixel 架构需配合高带宽 ISP 才能完全发挥性能,不能仅依赖 Sensor 规格参数。
多 Sensor 系统中 Dual Pixel 模组的搭配路径
旗舰机型普遍采用三摄或四摄系统配置,Dual Pixel 的模块部署需考虑以下策略:
- 主摄必配 Dual Pixel Sensor:确保核心成像质量、视频 CAF 能力;
- 长焦/广角按需部署:若用于视频录制或人像,建议加装 Dual Pixel;否则可简化为 PDAF;
- 主副协同:主副摄像头间使用相同 ISP 架构,提高 AI 模型复用性;
- ISP 动态通路调度支持:确保 ISP 能同时解析多路 Dual Pixel 信号并完成焦点切换。
随着 SoC 资源整合和 AI 参与度提升,多 Sensor 下的焦点融合与 Dual Pixel 协同优化将成为下一阶段的技术焦点。
第 7 节:调试实战分享:对焦失败、边缘漂移与低光对策
PDAF 信号异常与失焦图像排查思路
在工程实际中,Dual Pixel 系统虽具备全像素对焦能力,但仍常出现间歇性失焦、跳焦、边缘误锁等问题。这类问题多数源于 PDAF 信号异常或解算路径干扰,可通过以下排查策略进行定位与调优:
- 确认 PDAF RAW 数据质量:读取左右子像素图(通常为RAW12分离数据),观察边缘与高频细节区域的视差是否明显,若无,可能为模组遮光、玻璃贴合误差等物理问题。
- 聚焦窗口(AF ROI)设置错误:开发中常出现 ROI 坐标偏移或尺寸过小,导致对焦信号误判或聚焦区域丢失。
- AF Trigger 触发失效:部分平台对 CAF/AFC 模式切换存在调度冲突,导致触发失效;需明确状态转换链条、同步校验对焦状态。
- 验证 ISP AF Log 输出:大多数平台(如 Qualcomm、MTK)支持对 ISP AF 状态进行日志记录,包含 Current Focus Position、Step Size、Search Pattern、Peak Metric 等,对焦过程是否触顶、是否反向跳动等可通过此手段精准溯源。
结合使用 Test Chart 与移动目标,对焦效果评估需从信号质量、对焦策略、ISP 解算链三个方向协同展开。
低光场景对焦漂移与 Dual Gain HDR 的耦合影响
低光环境是对焦失败最常见的场景之一,其成因不仅仅是“光不够”,更深层的技术挑战来自于:
- 子像素信号 SNR 降低:在弱光下,左右子像素的信号强度本就低,进一步压缩了视差信号;
- AGC(自动增益)策略影响测距精度:ISP 在低光下通常会拉高模拟增益,但这会放大噪声扰动,造成视差不稳定;
- 与 Dual Gain HDR 冲突:部分平台在低光时启用 Dual Gain HDR 合成路径,而合成前帧之间存在亮度差,易造成视差漂移;
建议优化路径:
- 优先对 Dual Pixel 通路关闭多帧 HDR,在 CAF 模式下固定使用高 SNR 模式;
- 针对低光场景设置“低速精准”聚焦策略,延长测距曝光、放慢马达调焦速度;
- 提高对焦区域内的“对比度阈值”要求,防止暗区边缘反复锁定错误焦点。
ISP 参数调优路径(AF Trigger、AF ROI、Focus Window)
针对 Dual Pixel 模块的对焦调优,需重点围绕以下参数展开:
参数 | 说明 | 建议调优方向 |
---|---|---|
AF Trigger Policy | 手动/自动/延迟触发逻辑 | 根据平台对 CAF/Trigger 的兼容性做差异化设计 |
AF ROI Priority | 多目标下主目标权重策略 | 建议结合 AI 主体识别进行 ROI 权重动态调整 |
Focus Window Size | 聚焦窗口大小 | 通常建议设置为 15–20% 的中心区域宽度 |
AF Search Strategy | 搜索路径:线性 / 曲线 / 零点反向 | 推荐 Dual Pixel 使用非线性快速拟合策略 |
Low-Light AF Mode | 弱光场景下的补偿策略 | 开启曝光前置测距 + 降低对焦 Step Size |
可结合平台开放的 ISP Tool(如 QTI QACT、MTK CAMTuner)进行可视化调试。
第 8 节:未来趋势:全向对焦、多维景深与 AI 融合演进
Dual Pixel Pro / Quad Pixel PDAF 的架构趋势
近年来,各大 Sensor 厂商正加速拓展传统 Dual Pixel 架构的方向性限制,推出如下新架构:
- Dual Pixel Pro(如 Sony IMX989):除了传统水平视差结构,还引入垂直方向的像素视角,使其对斜向或非对称目标的对焦能力显著提升;
- Quad Pixel PDAF(如 Samsung HP1):通过将四合一 CFA 内嵌多个 PDAF 测距单元,实现高像素、高精度的相位检测与构图弹性;
- All-direction PDAF:研发中方案,试图以十字型或八向结构获取多角度视差图,提升景深解析能力。
这些趋势代表着对焦系统从单一位移测距向空间结构识别与图像建模协同方向演进。
全向对焦(Omni-direction PDAF)在结构层的实现挑战
实现真正意义上的全方向对焦(Omni-direction PDAF)需在 Sensor 层面对以下难题进行攻克:
- 子像素数量与尺寸受限:若每个像素需划分为多个方向的子通道,会显著降低 Fill Factor,进而影响感光能力;
- 视差通道干扰问题:不同方向的子像素间存在信号串扰,需加入 DTI(深沟隔离)与 Pixel Isolation 工艺;
- ISP 通路扩展限制:多方向的视差信号需独立编码与传输,考验 SoC 带宽与 ISP 架构解算能力;
- 马达响应精度要求更高:全方向对焦需极细粒度控制马达位移,传统 VCM 驱动器难以满足。
目前厂商多采用“物理结构 + AI 学习”混合方案规避硬件限制。
AI 辅助景深还原、人物抠像与光斑模拟能力的协同发展路径
Dual Pixel 系统最具想象空间的应用在于景深建模与背景模拟。未来趋势包括:
- 景深 + RGB 多模态重建:结合 Dual Pixel 的浅层视差信号与 RGB 图像结构信息,构建高精度景深图;
- AI 抠像分割协同模型:基于人物识别模型(如 BodyPose、Facial Landmark)与景深图联合优化,提升分割精度与边缘保留;
- Bokeh 模拟增强:模拟真实镜头的散景特性(如圆形光斑、旋转模糊),并根据景深层级做非线性模糊;
- 端侧 AI 实时景深渲染:结合 NPU 模块在拍摄预览时完成景深图渲染与特效预览。
这些方案正在逐步替代传统光学虚化路径,使 Dual Pixel 成为手机影像系统从“拍清楚”到“拍出氛围感”的关键引擎。未来的发展将以 Sensor、ISP、AI 协同设计为核心,持续拓展手机相机的专业表现力边界。
个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注人工智能领域。
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
具身智能:具身智能
国产 NPU × Android 推理优化:本专栏系统解析 Android 平台国产 AI 芯片实战路径,涵盖 NPU×NNAPI 接入、异构调度、模型缓存、推理精度、动态加载与多模型并发等关键技术,聚焦工程可落地的推理优化策略,适用于边缘 AI 开发者与系统架构师。
DeepSeek国内各行业私有化部署系列:国产大模型私有化部署解决方案
智能终端Ai探索与创新实践:深入探索 智能终端系统的硬件生态和前沿 AI 能力的深度融合!本专栏聚焦 Transformer、大模型、多模态等最新 AI 技术在 智能终端的应用,结合丰富的实战案例和性能优化策略,助力 智能终端开发者掌握国产旗舰 AI 引擎的核心技术,解锁创新应用场景。
企业级 SaaS 架构与工程实战全流程:系统性掌握从零构建、架构演进、业务模型、部署运维、安全治理到产品商业化的全流程实战能力
GitHub开源项目实战:分享GitHub上优秀开源项目,探讨实战应用与优化策略。
大模型高阶优化技术专题
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
Agentic AI架构实战全流程:一站式掌握 Agentic AI 架构构建核心路径:从协议到调度,从推理到执行,完整复刻企业级多智能体系统落地方案!
云原生应用托管与大模型融合实战指南
智能数据挖掘工程实践
Kubernetes × AI工程实战
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。
🌟 如果本文对你有帮助,欢迎三连支持!
👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新