将语义层引入图数据库:提升信息检索智能性

引言

图数据库(如Neo4j)通过节点和关系的方式提供了一种处理复杂互联数据的能力。然而,当我们需要查询信息时,直接生成Cypher语句的方法虽然很灵活,但在某些情况下可能显得脆弱且不够精准。为了解决这一问题,我们可以通过实现Cypher模板作为语义层中的工具,使LLM(大型语言模型)能够与之交互,提升系统的鲁棒性和易用性。

主要内容

环境设置

为了实现以上功能,我们首先需要设置合适的开发环境。在此,我们将主要使用Langchain和Neo4j来进行图数据库操作。

%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

设置数据库连接和API密钥:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()  # 获取OpenAI密钥

os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

在继续之前,请遵循Neo4j安装步骤来设置一个Neo4j数据库。

创建示例数据

为演示目的,我们将从CSV文件导入电影和演员信息到Neo4j数据库中。

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值