【Matlab免费获取】2024年3月2区TOP算法—黑翅鸳优化算法(BKA)-原理讲解及性能测试

1、算法简介

本期带来黑翅鸢优化算法(Black-winged kite algorithm,BKA)。该算法于2024年3月发表在中科院2区Top SCI期刊《Artificial Intelligence Review》上。其灵感来源主要基于黑翅鸢的狩猎技能和迁徙习惯。该算法具有进化能力强、搜索速度快、寻优能力强的特点。

【引用量在线,在动物园优化算法中承认度较高!】

【赠送源文献】

2、 算法原理简述【赠送原文献】

        黑翅鸢是一种小型鸟类,上半身为蓝灰色,下半身为白色。它们的显着特征包括迁移和掠夺行为。它们以小型哺乳动物、爬行动物、鸟类和昆虫为食,具有很强的悬停能力,可以取得非凡的狩猎成功。受到它们的狩猎技能和迁徙习性的启发,建立了一个基于黑翅鸢的算法模型。

1、初始化种群:

        创建一组随机解决方案是初始化总体的第一步。以下矩阵可用于表示每个黑翅鸳 (BK) 的位置:

        其中 pop 是潜在解的数量,dim 是给定问题维度的大小,BKij是第 i个黑翅鸳的第 j 维。我们将均匀分布每个黑翅鸳的位置。

        其中 i 是介于 1 和 pop 之间的整数,其中 BKlb和 BKub 分别是第 j个维度中第 i个黑翅鸢的下限和上限rand是在 [0, 1] 之间随机选择的值。

        在初始化过程中,BKA 选择适应度值最好的个体作为领导者 XL在初始种群中,这被认为是黑翅鸢的最佳位置。这是初始领导者 X 的数学表示L以 Minimum 值为例。

2、攻击行为:

        黑翅鸢作为小型草原哺乳动物和昆虫的捕食者,在飞行过程中会根据风速调整翅膀和尾角,静静地盘旋观察猎物,然后迅速俯冲攻击。此策略包括用于全局探索和搜索的不同攻击行为。图 a 显示了黑翅鸢在空中盘旋时的攻击状态,而图 a 显示了黑翅鸢的攻击状态。b 显示了黑翅鸳在空中盘旋时的状态。以下是黑翅鸳攻击行为的数学模型:

3、迁移行为:

        迁移通常由领导者领导,他们的导航技能对团队的成功至关重要。我们提出了一个基于鸟类迁徙的假设:如果当前种群的适应度值小于随机种群的适应度值,领导者将放弃领导并加入迁徙种群,表明不适合带领种群前进。相反,如果当前总体的适应度值大于随机总体的适应度值,它将引导总体直到到达目的地。该策略可以动态选择优秀的领导者,以确保迁移成功。下图显示了黑翅鸢迁徙过程中领头鸟的变化。以下是黑翅鸳迁徙行为的数学模型

        Ljt 表示到目前为止第 t次迭代的第 j维中黑翅鸳的主要得分者。yi, jt 和 yi, jt + 1 分别表示第 i个黑翅鸳在 t 和(t + 1) 迭代步骤中第 j个维度的位置。F我表示任何黑翅鸳在 t 迭代中获得的第 j 维中的当前位置。F日表示从 t 迭代中的任何黑翅鸳获得的第 j 个维度中随机位置的适应度值。C(0,1) 代表柯西突变。定义如下:

        一维柯西分布是具有两个参数的连续概率分布。以下方程说明了一维柯西分布的概率密度函数:

        当 δ = 1 时,μ = 0,其概率密度函数将成为标准形式。以下是精确的公式:

3、BKA算法伪代码

4、测试函数结果对比

        原文作者针对 CEC-2022 和 CEC-2017 的标准测试函数集以及其他复杂函数,BKA 分别在 66.7%、72.4% 和 77.8% 的情况下获得了最佳性能。通过详细的收敛分析和统计比较验证了该算法的有效性。此外,它在解决 5 个实际工程设计问题中的应用表明了它在解决现实世界中受限挑战方面的实际潜力,并表明与现有的优化技术相比,它具有显着的竞争优势。

        为了方便各位使用和理解,采用CEC2005中的23种测试函数与 INFO(向量加权平均算法)和PSO进行对比测试!(仅展示8组(为了查看BKA算法的稳定性和鲁棒性, 单峰、多峰、固定多峰函数均包含在内),其余函数可自行切换测试)

        可以看出在三类测试函数中BKA算法均表现优异!可以定制优化到各自的实际问题中!

【参考文献】

[1]Ghasemi M, Zare M, Trojovský P, et al. Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm[J]. Knowledge-Based Systems, 2024, 295: 111850.

5、代码获取(也可以定制优化相关模型)

点击下方了解更多!(下方回复BKA)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值