导读:
近年来,大型语言模型(LLMs)在多个领域展现出了卓越的推理能力,逐渐成为各行各业的重要工具。然而,在机器人领域,LLMs的应用目前主要局限于操作规划任务,尚未充分发挥其在具体机器人操作中的潜力,尤其是在精确的抓取任务中。©️【深蓝AI】编译
论文出处:IROS2024
论文标题:RT-Grasp: Reasoning Tuning Robotic Grasping via Multi-modal Large Language Model
论文作者:Jinxuan Xu, Shiyu Jin, Yutian Lei, Yuqian Zhang and Liangjun Zhang
项目地址:https://sites.google.com/view/rt-grasp
编译:阿豹
本文提出了一种创新的方法——推理调优(Reasoning Tuning),旨在解决这一问题。通过在训练过程中加入推理阶段,该方法让LLMs能够生成数值预测,尤其是在机器人抓取任务中的关键数值输出,如抓取姿势。得益于LLMs强大的推理能力和丰富的先验知识,机器人不仅能够生成适应不同场景的抓取方案,还能够通过对话进行灵活调整,从而实现更加智能化的抓取操作。
通过在多个抓取数据集和真实实验中的广泛验证,结果表明,具备多模态能力的LLMs能够精准预测抓取姿势,成功弥合了基于文本的规划与实际机器人控制之间的隔阂,显著提升了LLMs在机器人抓取领域的应用潜力。
1.引入
近年来,人工智能的迅猛发展,尤其是大型语言模型(LLMs)的出现,极大推动了各个领域的进步。这些模型凭借丰富的知识库和强大的推理能力,正在彻底改变我们处理各种任务的方法,尤其是在语言处理方面。机器人学中,LLMs在促进机器人与人类之间的直接互动方面发挥了重要作用。例如,在机器人操作规划等任务中,许多研究[1][2][3]已经利用LLMs将用户的自然语言指令转化为机器人可执行的多步骤规划。然而,尽管LLMs在机器人学中的应用潜力巨大,它们目前的应用主要集中在规划任务中,尤其是在需要精确数值输出的任务中,LLMs的应用却面临着瓶颈。
本文提出了一个创新的方法,探讨了如何将LLMs的推理能力应用于机器人任务中的数值预测,特别是在机器人抓取任务中的应用。传统的机器人抓取方法通常依赖于确定性预测,但这些方法由于缺乏推理能力,在实际应用中常常无法应对复杂环境的挑战。例如,许多基于CNN架构的传统方法在基准数据集上表现出色,但在实际操作中,常常出现理论上正确但执行时不切实际的情况。具体而言,某些理论上正确的抓取姿势,在实际操作时可能由于机器人的夹爪限制或其他因素,导致无法成功实施。因此&#