实时调整,灵活抓取!RT-Grasp:大语言模型赋能的机械臂抓取新架构

导读

近年来,大型语言模型(LLMs)在多个领域展现出了卓越的推理能力,逐渐成为各行各业的重要工具。然而,在机器人领域,LLMs的应用目前主要局限于操作规划任务,尚未充分发挥其在具体机器人操作中的潜力,尤其是在精确的抓取任务中。©️【深蓝AI】编译

论文出处:IROS2024

论文标题:RT-Grasp: Reasoning Tuning Robotic Grasping via Multi-modal Large Language Model

论文作者:Jinxuan Xu, Shiyu Jin, Yutian Lei, Yuqian Zhang and Liangjun Zhang

项目地址:https://sites.google.com/view/rt-grasp

编译:阿豹

本文提出了一种创新的方法——推理调优(Reasoning Tuning),旨在解决这一问题。通过在训练过程中加入推理阶段,该方法让LLMs能够生成数值预测,尤其是在机器人抓取任务中的关键数值输出,如抓取姿势。得益于LLMs强大的推理能力和丰富的先验知识,机器人不仅能够生成适应不同场景的抓取方案,还能够通过对话进行灵活调整,从而实现更加智能化的抓取操作。

通过在多个抓取数据集和真实实验中的广泛验证,结果表明,具备多模态能力的LLMs能够精准预测抓取姿势,成功弥合了基于文本的规划与实际机器人控制之间的隔阂,显著提升了LLMs在机器人抓取领域的应用潜力。

1.引入

近年来,人工智能的迅猛发展,尤其是大型语言模型(LLMs)的出现,极大推动了各个领域的进步。这些模型凭借丰富的知识库和强大的推理能力,正在彻底改变我们处理各种任务的方法,尤其是在语言处理方面。机器人学中,LLMs在促进机器人与人类之间的直接互动方面发挥了重要作用。例如,在机器人操作规划等任务中,许多研究[1][2][3]已经利用LLMs将用户的自然语言指令转化为机器人可执行的多步骤规划。然而,尽管LLMs在机器人学中的应用潜力巨大,它们目前的应用主要集中在规划任务中,尤其是在需要精确数值输出的任务中,LLMs的应用却面临着瓶颈。

本文提出了一个创新的方法,探讨了如何将LLMs的推理能力应用于机器人任务中的数值预测,特别是在机器人抓取任务中的应用。传统的机器人抓取方法通常依赖于确定性预测,但这些方法由于缺乏推理能力,在实际应用中常常无法应对复杂环境的挑战。例如,许多基于CNN架构的传统方法在基准数据集上表现出色,但在实际操作中,常常出现理论上正确但执行时不切实际的情况。具体而言,某些理论上正确的抓取姿势,在实际操作时可能由于机器人的夹爪限制或其他因素,导致无法成功实施。因此&#

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值