【CoT】《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》- 知识点目录

《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》

摘要

本文探索如何生成一个chain of thought(思维链)——即一系列中间推理步骤——如何显著提高大型语言模型执行复杂推理的能力。特别地,本文展示了这种推理能力如何通过名为 chain-of-thought prompting的简单方法,自然地出现在大型语言模型中,其中提供了一些思维链演示作为提示词的示例。
对三种大型语言模型地实验表明,CoT prompting 可以提高在多种算术、常识和符号推理任务上的性能。(empirical)实证收益十分显著。例如:PaLM 540B 在仅八个CoT范例的提示下,就可以在GSM8K数学词汇题基准上达到最先进的精度,甚至超过带有验证器的微调 GPT-3。

1 引言

近期自然语言处理(NLP)领域被语言模型(Peters_2018_ELMo; Devlin_2019_BERT; Brown_2020_GPT3, inter alia)的革新深深影响。扩大语言模型的规模已被证明可以带来一系列的好处,如提升性能和样本效率(Kaplan_2020_Scaling_Laws_for_LM; Brown_2020_GPT3, inter alia)。然而,仅仅扩大模型规模并不足以在挑战性任务如算术、常识和符号推理等方面取得高性能(Rae_2021_Gopher)。

本文探索了如何通过一个简单的方法来解锁LLM的推理能力,此方法受到两种思想的启发。其一,算术推理技术可以从 generating natural language rationales 中受益,从而可以引导出最终的答案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值