RAG——如何选择文本embedding模型

本文探讨了在进行语义检索时如何选择HuggingFace平台上的文本嵌入模型,推荐参考模型排行榜,依据场景、资源和语言需求进行个性化选择,并可能需要进一步测试以确保满足需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

想要做语义检索,迫切需要embedding模型来做文本的嵌入。也就是转向量。 huggingface上那么多text embedding模型,到底应该选择什么模型效果更好呢?有条件的可以自己测试,如果不具备这个能力,可以看看这个排行榜!可以根据自己的场景,自己的资源,自己的语言需求来选择合适的模型,再去做测试,看看是否能够满足。

这里是hugging face上的文本嵌入模型的排行榜

https://huggingface.co/spaces/mteb/leaderboard

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值