DeepSeek-R1 核心强化学习算法 GRPO 详解

在大语言模型(LLMs)的训练中,强化学习算法一直是提升模型性能的关键。然而,传统算法如PPO面临着计算开销大、策略更新不稳定等问题。今天,我们将深入解析DeepSeek-R1模型中采用的新型强化学习算法——GRPO(Group Relative Policy Optimization)。本文将为你详细解读GRPO的原理、实现细节以及在数学推理和代码生成任务中的卓越表现,带你一探究竟,了解这一算法如何革新大语言模型的训练方式!

一、GRPO算法概述

1.1 算法背景与动机

在大语言模型(LLM)的微调过程中,强化学习(RL)扮演着至关重要的角色。传统的近端策略优化(PPO)算法虽然被广泛应用于LLM的微调,但其在处理大规模模型时面临着巨大的计算和存储负担。PPO算法需要维护一个与策略模型大小相当的价值网络来估计优势函数,这在大模型场景下会导致显著的内存占用和计算代价。例如,在数十亿甚至千亿参数的语言模型上应用PPO时,价值网络的训练和更新会消耗大量的计算资源,使得训练过程变得低效且难以扩展。

此外,PPO算法在更新策略时可能会导致策略分布发生剧烈变化,从而影响训练的稳定性。为了解决这些问题,DeepSeek提出了一种新的强化学习算法——组相对策略优化(GRPO),旨在减少对价值网络的依赖,同时保持策略更新的稳定性和高效性。

1.2 GRPO核心思想

GRPO的核心思想是通过组内相对奖励来优化策略模型,而不是依赖传统的批评模型(critic model)。具体来说,GRPO会在每个状态下采样一组动作,然后根据这些动作的相对表现来调整策略,而不是依赖一个单独的价值网络来估计每个动作的价值。

这种方法的优势在于:

  • 减少计算负担:通过避免维护一个与策略模型大小相当的价值网络,GRPO显著降低了训练过程中的内存占用和计算代价。

  • 提高训练稳定性:GRPO通过组内比较来估计优势函数,减少了策略更新的方差,从而确保了更稳定的学习过程。

  • 增强策略更新的可控性:GRPO引入了KL散度约束,防止策略更新过于剧烈,从而保持了策略分布的稳定性。

从数学角度来看,GRPO的目标是最大化预期累积奖励,同时保持策略更新的稳定性。其目标函数可以表示为:

在这里插入图片描述

其中:G 是采样动作的组大小。

在这里插入图片描述

是当前策略与旧策略的概率比。

在这里插入图片描述

通过这种方式,GRPO不仅提高了训练效率,还确保了策略更新的稳定性和可控性,使其成为一种适合大规模语言模型微调的高效强化学习算法。

二、GRPO算法原理

2.1 算法流程

GRPO(Group Relative Policy Optimization)算法的流程可以分为以下几个关键步骤,这些步骤共同协作,实现了对策略模型的高效优化,同时避免了传统强化学习算法中常见的计算瓶颈和稳定性问题。

在这里插入图片描述

通过以上步骤,GRPO能够在不依赖价值网络的情况下,实现对策略模型的有效优化,同时保持训练过程的稳定性和高效性。

三、GRPO与PPO对比

3.1 算法结构对比

PPO(Proximal Policy Optimization)和GRPO(Group Relative Policy Optimization)都是强化学习中的重要算法,但在结构和实现方式上存在显著差异。

价值网络的使用:

  • PPO:依赖于一个与策略模型大小相当的价值网络(critic model)来估计优势函数(advantage function)。这个价值网络需要在每个时间步对状态进行评估,计算复杂度高,内存占用大。

  • GRPO:完全摒弃了价值网络,通过组内相对奖励来估计优势函数。这种方法通过比较同一状态下的多个动作的奖励值来计算相对优势,显著减少了计算和存储需求。

奖励计算方式:

  • PPO:使用广义优势估计(GAE)来计算优势函数,需要对每个动作的即时奖励和未来奖励的折扣总和进行估计。

  • GRPO:通过采样一组动作并计算它们的奖励值,然后对这些奖励值进行归一化处理,得到相对优势。这种方法更直接,减少了对复杂奖励模型的依赖。

策略更新机制:

  • PPO:通过裁剪概率比(clip operation)来限制策略更新的幅度,确保策略分布的变化在可控范围内。

  • GRPO:引入了KL散度约束,直接在损失函数中加入KL散度项,从而更精细地控制策略更新的幅度。

计算效率:

  • PPO:由于需要维护和更新价值网络,计算效率较低,尤其是在大规模语言模型中,训练过程可能变得非常缓慢。

  • GRPO:通过避免价值网络的使用,显著提高了计算效率,降低了内存占用,更适合大规模语言模型的微调。

3.2 优势与局限性

PPO的优势:

  • 稳定性:PPO通过裁剪概率比,能够有效防止策略更新过于剧烈,从而保持训练过程的稳定性。

  • 广泛适用性:PPO在多种强化学习任务中表现出色,适用于多种类型的环境和任务。

PPO的局限性:

  • 计算负担:在大规模语言模型中,PPO需要维护一个与策略模型大小相当的价值网络,导致显著的内存占用和计算代价。

  • 更新方差:PPO的策略更新依赖于单个动作的奖励值,可能导致较高的方差,影响训练的稳定性。

GRPO的优势:

  • 计算效率:GRPO通过避免价值网络的使用,显著降低了计算和存储需求,提高了训练效率。

  • 稳定性:通过组内相对奖励的计算,GRPO减少了策略更新的方差,确保了更稳定的学习过程。

  • 可控性:GRPO引入了KL散度约束,能够更精细地控制策略更新的幅度,保持策略分布的稳定性。

GRPO的局限性:

  • 采样成本:GRPO需要对每个状态采样一组动作,这在某些情况下可能会增加采样成本。

  • 适用范围:GRPO在某些任务中可能不如PPO表现稳定,尤其是在奖励信号稀疏的情况下。

通过对比可以看出,GRPO在计算效率和训练稳定性方面具有显著优势,尤其适合大规模语言模型的微调。然而,它也存在一些局限性,需要在实际应用中根据具体任务进行权衡。

四、GRPO在DeepSeek-R1中的应用

4.1 训练流程

DeepSeek-R1模型采用了GRPO算法进行强化学习微调,其训练流程如下:

  • 监督微调(SFT)阶段:首先使用高质量的标注数据对基础模型进行监督微调,使模型在特定任务上具备初步的性能。这一阶段为后续的强化学习训练奠定了基础,确保模型能够生成符合人类标注标准的输出。

  • 强化学习(RL)阶段:在监督微调的基础上,引入GRPO算法进行强化学习微调。具体步骤如下:

1、采样动作组:对于每个输入提示,模型根据当前策略生成一组不同的输出。这些输出的多样性为后续的相对奖励计算提供了基础。

2、奖励评估:使用奖励模型对每个输出进行评分,这些评分可以基于任务的特定标准,如数学题的正确性、代码的可运行性等。

3、计算相对优势:将每个输出的奖励值进行归一化处理,得到相对优势。这一过程通过比较同一输入下的多个输出,减少了策略更新的方差。

4、策略更新:根据相对优势更新策略模型的参数,增加高奖励输出的概率,减少低奖励输出的概率。同时,通过KL散度约束确保策略更新的稳定性。

5、迭代优化:重复上述步骤,逐步优化策略模型,使其在特定任务上表现得更好。

  • 拒绝采样(RS)阶段:为了进一步提升模型的通用性和连贯性,使用拒绝采样生成合成数据集。这些数据集用于扩展模型的能力,使其能够处理更广泛的任务。

  • 最终强化学习阶段:在模型具备较强的通用性后,再次应用GRPO算法,重点关注模型的实用性和无害性。通过调整奖励模型,确保模型生成的输出既符合任务要求,又具有良好的社会适应性。

通过以上多阶段的训练流程,DeepSeek-R1模型在数学推理、代码生成等复杂任务上表现出色,同时保持了较高的通用性和连贯性。

4.2 实验结果

在DeepSeek-R1模型的训练过程中,GRPO算法的应用取得了显著的实验结果:

  • 数学推理任务:在2024年美国数学邀请赛(AIME)中,DeepSeek-R1模型的通过率@1得分跃升至71.0%,相比未使用GRPO算法的模型,性能提升显著。这一结果表明GRPO算法在提升模型的数学推理能力方面具有显著优势。

  • 代码生成任务:在代码生成任务中,DeepSeek-R1模型生成的代码可运行性达到85%,正确率达到70%。这些数据表明GRPO算法能够有效提升模型在代码生成任务中的性能,生成高质量的代码。

  • 通用任务:在更广泛的通用任务中,如写作和角色扮演等,DeepSeek-R1模型展现出更强的通用性和连贯性。通过拒绝采样生成的合成数据集,模型能够更好地适应各种任务,生成符合人类语言习惯的输出。

  • 训练效率:GRPO算法显著提高了训练效率,降低了内存占用和计算代价。在大规模语言模型的微调过程中,GRPO算法的训练速度比传统的PPO算法快30%,内存占用减少50%。这使得DeepSeek-R1模型能够在更短的时间内完成训练,同时保持较高的性能。

这些实验结果表明,GRPO算法在DeepSeek-R1模型的训练中发挥了重要作用,不仅提升了模型在特定任务上的性能,还提高了训练效率,使其成为一种适合大规模语言模型微调的高效强化学习算法。

DeepSeek GRPO vs. OpenAI RLHF

既然谈到了DeepSeek GRPO算法,就不得不想到OpenAI 的 RLHF 算法,它们两个PK来看看~

在这里插入图片描述

希望这个表格能帮助你更清晰地对比 GRPO 算法和 OpenAI 的 RLHF 算法。


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

### DeepSeek-R1-Zero 中 GRPO 技术细节 DeepSeek-R1-Zero 使用了一种称为广义奖励预测优化(Generalized Reward Prediction Optimization, GRPO)的技术来提升模型的推理能力和鲁棒性[^1]。 #### 广义奖励预测优化概述 GRPO核心在于设计一种机制,使得模型能够更有效地利用环境反馈来进行参数更新。具体来说,在传统的强化学习框架中,代理仅依赖即时奖励信号进行策略调整;而在 GRPO 方法中,则引入了一个额外的目标函数——即对未来可能获得总回报的估计值进行建模,并以此指导当前决策过程中的探索方向[^3]。 #### 实现方式 - **多步前瞻规划**:不同于标准的一步 Q 学习方法,GRPO 支持多步前瞻规划,允许算法考虑未来多个时间步后的累积收益情况。这有助于缓解短期局部最优解带来的负面影响,从而促进全局最优路径的学习。 - **动态权重分配**:针对不同类型的子任务或状态空间区域设置不同的重要程度系数,使模型能够在复杂环境中灵活应对变化的任务需求。例如,在某些特定情境下给予更高的关注以加速收敛速度,而在其他时候则保持较低敏感度以便更好地泛化到未见过的情况。 ```python def grpo_loss(current_state, action_taken, next_states, rewards, gamma=0.99): """ 计算GRPO损失函数 参数: current_state (Tensor): 当前状态表示 action_taken (int): 执行的动作索引 next_states (list of Tensor): 下一时刻所有可能的状态列表 rewards (float or list of float): 对应next_states的实际奖励值 gamma (float): 衰减因子,默认为0.99 返回: loss_value (float): 总体损失数值 """ predicted_rewards = model.predict_reward(current_state, action_taken) target_values = [] for i, state in enumerate(next_states): max_future_reward = max([model.predict_reward(state, a) * gamma for a in range(num_actions)]) target_values.append(rewards[i] + max_future_reward) return torch.mean((torch.tensor(target_values) - predicted_rewards)**2).item() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值