[论文解读]知识图谱引导的检索增强生成RAG - 南京大学&阿里巴巴

在这里插入图片描述

一、摘要

检索增强生成(RAG)作为一种有前途的技术出现,用于解决大型语言模型(LLMs)生成的响应中的幻觉问题。现有的RAG研究主要集中在应用基于语义的方法检索孤立的相关片段,忽略了它们之间的内在关系。本文提出了一种新颖的知识图谱引导的检索增强生成(KG2RAG)框架,该框架利用知识图谱(KGs)提供片段之间的事实级关系,提高检索结果的多样性和连贯性。具体来说,在进行基于语义的检索以提供种子片段之后,KG2RAG采用知识图谱引导的片段扩展过程和基于知识图谱的片段组织过程,以提供相关且重要的知识,形成结构良好的段落。在HotpotQA数据集及其变体上进行的广泛实验证明了KG2RAG相对于现有的基于RAG方法的优势,无论是在响应质量还是检索质量方面。

[2502.06864] Knowledge Graph-Guided Retrieval Augmented Generation
https://arxiv.org/abs/2502.06864

在这里插入图片描述

二、核心速览

1、研究背景

  1. 研究问题:这篇文章要解决的问题是大型语言模型(LLMs)在生成响应时出现的幻觉问题。具体来说,LLMs可能会生成包含过时信息或缺乏领域特定知识的内容。

  2. 研究难点:该问题的研究难点包括:现有基于语义的检索方法只能检索到孤立的、同质的、冗余的信息块,无法提供这些信息块之间的内在关系,限制了LLMs在生成综合性和可靠响应方面的能力。

  3. 相关工作:现有的检索增强生成(RAG)方法主要依赖于关键词或语义检索来获取与用户查询相似的文件或信息块,但这些方法存在检索结果同质化、冗余等问题。知识图谱(KGs)作为结构化的事实知识抽象,可以有效地补充现有的基于语义的RAG方法。

2、研究方法

这篇论文提出了一种新的知识图谱引导的检索增强生成(KG2RAG)框架,用于解决LLMs生成响应时的幻觉问题。具体来说,

  1. 文档离线处理:首先,将所有文档按句子和段落结构分割成多个信息块(chunks),并与特定的知识图谱(KG)关联,建立信息块与KG之间的链接。

  2. 基于KG的块检索:提出了一个两阶段的检索过程,包括基于语义的检索和图引导的扩展。

  • 基于语义的检索:使用嵌入模型计算用户查询与所有信息块的语义相似度,选择相似度最高的前k个信息块作为检索结果。

  • 图引导的扩展:以检索到的信息块为种子块,通过KG中的重叠或连接实体进行扩展,获取扩展子图。S)算法实现。

  1. 基于KG的上下文组织:在检索结果中保留最相关的信息,并将信息块组织成与KG骨架一致的内部连贯段落。具体步骤包括:
  • 过滤:计算扩展块与用户查询的语义相似度,构建无向加权图,并通过最大生成树(MST)过滤冗余边。

  • 排列:为每个生成的MST提供文本表示和三元组表示,使用交叉编码器重排函数计算MST与用户查询的相关性,并按相关性排序选择前k个块。

3、实验设计

  1. 数据集:在HotpotQA数据集及其变体上进行实验。HotpotQA数据集包括HotpotQA-Dist和HotpotQA-Full两种设置。为了减轻对先验知识的依赖,构建了HotpotQA的变体Shuffle-HotpotQA-Dist和Shuffle-HotpotQA-Full。

  2. 评估指标:比较KG2RAG与现有RAG方法在响应质量和检索质量上的表现。响应质量使用F1分数、精确度和召回率作为指标;检索质量使用F1分数、精确度和召回率作为指标。

  3. 基线方法:比较了LLM-only、Semantic RAG、Hybrid RAG、GraphRAG、LightRAG和KG2RAG等方法。

  4. 参数配置:使用Llama3-8B作为LLMs,mxbai-embed-large作为嵌入模型,bge-reranker-large作为交叉编码器重排器。k值设为10,除非另有说明。

4、结果与分析

  1. 响应质量:KG2RAG在HotpotQA-Full和Shuffle-HotpotQA-Full设置上均优于基线方法,特别是在Fullwiki设置中,KG2RAG至少提高了8%的F1分数。

    在这里插入图片描述

  2. 检索质量:KG2RAG在HotpotQA-Dist和Shuffle-HotpotQA-Dist设置上实现了较高的检索精度和召回率的平衡,特别是在Distactor设置中,KG2RAG的精确度提高了超过7.9%。

  3. 消融研究:通过消融实验验证了KG引导的扩展和基于KG的上下文组织模块的贡献。结果表明,仅使用KG引导的扩展会显著降低检索质量,而仅使用基于KG的上下文组织模块会显著提高检索精度但无法生成更好的响应。

    在这里插入图片描述

5、总体结论

本文提出的KG2RAG框架通过整合知识图谱,增强了检索增强生成(RAG)的性能。KG2RAG通过建立信息块与特定KG之间的链接,提供了事实级的关系,并进行了基于KG的块扩展和基于KG的上下文组织。实验结果表明,KG2RAG在响应质量和检索质量上均优于现有方法。未来的工作将把KG2RAG开发成一个易于集成到其他方法中的插件工具,以促进KG在RAG中的应用和发展。

三、论文评价

1、优点与创新

  1. 知识图谱引导的检索增强生成框架:提出了KG²RAG框架,利用知识图谱(KGs)提供事实级关系,提高了检索结果的多样性和连贯性。

  2. 语义检索与图引导扩展结合:在语义检索的基础上,通过图引导扩展过程,获取包含重叠或相关实体和三元组的子图,进一步丰富检索结果。

  3. 基于知识图谱的上下文组织:设计了基于知识图谱的上下文组织模块,作为过滤器和排列器,保留最相关的信息并形成内部一致、语义连贯的段落。

  4. 实验验证:在HotpotQA数据集及其变体上进行了广泛的实验,证明了KG²RAG在响应质量和检索质量上的优势。

  5. 模块化设计:KG²RAG的不同模块(如KG引导扩展和基于知识图谱的上下文组织)可以独立开发和集成,增强了框架的灵活性和可扩展性。

2、不足与反思

  1. 局限性:KG²RAG仅关注检索优化部分,未优化其他模块。未来将开发成即插即用的工具,与其他方法轻松集成,促进研究社区的发展。

四、关键问题及回答

问题1:KG2RAG框架中的文档离线处理是如何进行的?

  1. 分割文档:将所有文档按句子和段落结构分割成多个块。

  2. 预处理:对这些块进行预处理,如添加相关上下文、提取元信息(如标题、摘要)和生成对应的问题。

  3. 关联KG:将这些预处理后的块与特定的知识图谱(KG)关联,建立块与KG之间的链接,以捕捉块之间的事实级关系。

这些步骤确保了块与KG之间的紧密联系,从而在后续的检索和生成过程中能够有效地利用这些关系。

问题2:KG2RAG框架中的KG增强块检索是如何实现的?

KG2RAG提出了一个两阶段的检索过程:

  1. 基于语义的检索:使用嵌入模型计算用户查询与所有块之间的语义相似度,选择相似度最高的k个块作为检索到的块。

  2. 图引导的扩展:将这些检索到的块作为种子块,通过图引导的扩展过程提取相关子图,并包含重叠或相关的实体和三元组。具体来说,首先获取种子块的相关子图,然后遍历子图的m跳邻域,扩展子图以包含更多的相关实体和三元组。

这种图引导的扩展方法有助于防止检索到的块之间的冗余和过度同质化,从而提高检索的多样性和全面性。

问题3:KG2RAG框架中的基于KG的上下文组织模块是如何工作的?

基于KG的上下文组织模块在KG增强的块检索之后引入,主要起到两个作用:

  1. 过滤:计算扩展块与用户查询之间的语义相似度,将扩展子图转换为无向加权图,并通过计算最大生成树(MST)来保留最具相关信息的内容,消除冗余边。

  2. 组织:为每个生成的MST提供文本表示和三元组表示。文本表示通过深度优先搜索(DFS)算法将相连的块连接成一个连贯的段落;三元组表示则直接连接MST中的所有边。然后,使用交叉编码器重排函数计算MST与用户查询的相关性,并按相关性排序,选择前k个块作为最终输入到LLMs中进行响应生成。

这种上下文组织方法确保了检索到的块在语义上是连贯的,并且与查询高度相关,从而提高了生成响应的质量。


五、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### 使用大模型RAG增强知识图谱检索 #### 方法概述 为了提升知识图谱检索效率和准确性,可以采用基于Retrieval-Augmented Generation (RAG) 的方法。这种方法结合了密集向量索引技术和生成式预训练模型的优势,在处理复杂查询时表现出色[^1]。 #### 实现细节 具体来说,Graph RAG 技术将整个知识图谱视为一个巨大的词汇表,其中每个实体和关系都被当作独立词条来对待。这种设计允许系统在执行检索操作期间把实体及其关联的关系作为一个整体来进行考虑,从而提高了上下文理解能力和连贯性[^2]。 当接收到用户提出的自然语言形式的问题后: - **编码阶段**:利用BERT或其他类似的双向Transformer架构对输入文本进行编码得到固定长度的表示; - **检索阶段**:根据上述获得的语义特征从预先构建好的知识图谱数据库里挑选出最有可能包含答案的部分;此时会特别关注那些与问题中提到的关键概念密切相连的知识片段; - **解码/生成阶段**:最后一步则是调用T5这样的序列到序列转换器完成最终的回答合成工作。它可以根据前面找到的相关资料自动生成一段流畅且准确回应原问句的内容。 以下是简化版Python伪代码展示这一过程的核心部分: ```python from transformers import BertTokenizer, T5ForConditionalGeneration def rag_knowledge_retrieval(query_string): tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = T5ForConditionalGeneration.from_pretrained('t5-small') # 编码阶段 inputs = tokenizer.encode("question: " + query_string, return_tensors="pt") # 假设这里有一个函数可以从KG检索相关信息并返回top-k条目 retrieved_facts = retrieve_top_k_facts_from_kg(inputs) context = ' '.join([fact['text'] for fact in retrieved_facts]) input_ids = tokenizer( f"context: {context} </s> question: {query_string}", max_length=512, truncation=True, padding='max_length', return_tensors='pt' )["input_ids"] outputs = model.generate(input_ids=input_ids) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer ``` 此段代码展示了如何集成现有的Hugging Face Transformers库中的组件来创建一个简单的RAG框架用于增强知识图谱检索应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值