【重磅】3分钟快速部署自己的本地Deepseek教程来啦!

DeepSeek R1 发布以来,我们便开始关注其性能,没想到在春节假期短短几天内,它已然火爆全网!🔥

1 月 27 日,国内大模型公司“深度求索”研发的全新模型 DeepSeek-R1 发布,助力 DeepSeek 应用登顶苹果中国与美国 App Store 免费榜,甚至在美区超越 ChatGPT,成为 AI 领域最炙手可热的产品。

本期视频由全优统计的分子生物学大佬-段老师,为大家简要讲解如何在本地部署 DeepSeek,视频时长仅 1 分40秒。

3分钟快速部署自己的本地Deepseek

用到的软件链接:

ollama:https://ollama.com/download

page assist:https://reurl.cc/nq2p0e

终端代码:ollama run deepseek-r1:8b

版本选择参考:

有人将 DeepSeek 的成功归因于中国技术理想主义的胜利,也有不少外国人形容它为“神秘的东方力量”。然而,若从整个 AI 大模型产业的角度来看,DeepSeek 的崛起或许代表了一种全新的发展方向。

刘伟指出,大模型的发展正在经历变化,传统上,模型的优劣往往取决于算力的规模,但 DeepSeek 给出了另一种可能——即便算力有限、数据量不占优势,通过算法优化同样可以实现卓越性能。这一突破无疑为 AI 领域提供了新的思路。

### Stable Diffusion 3 发布信息和特性 #### 架构特点 Stable Diffusion 3采用扩散转换器架构作为其核心竞争力,这种架构使得模型能够更有效地处理复杂的图像生成任务[^1]。 #### 性能提升 相比前代版本,Stable Diffusion 3在多个方面实现了显著改进。具体来说,在文本语义理解、色彩饱和度、图像构图等多个维度上均有增强,尤其值得注意的是对于多主题提示的支持以及更高的图像质量[^2]。 #### 参数规模与适用性 此款新型号拥有不同大小的变体,最小版仅有8亿参数而最大可达80亿参数。这样的设计不仅让高性能计算成为可能,同时也确保了轻量化部署的需求得到满足,甚至能够在移动终端等资源受限环境中运行良好[^4]。 #### 对比其他模型的表现 当与其他同类产品如 MidJourney 进行比较时,Stable Diffusion 3展现出了不俗的竞争实力;然而面对某些特定领域内的专用解决方案(例如 OUYSD3),则显示出更为优越的整体性能优势[^3]。 ```python # Python代码示例用于展示如何加载预训练好的StableDiffusionV3模型 from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-3" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) pipe.to("cuda") prompt = "A fantasy landscape with a castle on top of the mountain under starry sky." image = pipe(prompt).images[0] image.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值