通俗理解注意力机制中的Q、K和V表示的具体含义

本文通过机器翻译实例,解析Attention机制工作原理。详细介绍了Query、Key、Value概念,并以“I like watching movies”的翻译过程为例,说明如何利用Attention机制提高模型效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.jianshu.com/p/7a61533fd73b

 

通俗理解讲解一

以翻译为例

  • source:我 是 中国人
  • target: I am Chinese

比如翻译目标单词为 I 的时候,Q为I

而source中的 “我” “是” “中国人”都是K,

那么Q就要与每一个source中的K进行对齐(相似度计算);"I"与"我"的相似度,"I"与"是"的相似度;"I"与"中国人"的相似度;

相似度的值进行归一化后会生成对齐概率值(“I"与source中每个单词的相似度(和为1)),也可以注意力值;

而V代表每个source中输出的context vector;如果为RNN模型的话就是对应的状态向量;即key与value相同;

然后相应的V与相应的P进行加权求和,就得到了context vetor;

从网上找到了一张图更能证明我的理解的正确性;

 

 

阶段1中的F函数是一个计算得分的函数;比如可以用前馈神经网络结构进行计算得分:

这里的v与上面的V是不一样的,这属于一个单隐藏层的前馈神经网络;v属于隐藏层激活后的一个计算得分的权重系数矩阵;

w属于激活前的权重系数矩阵;

这里应该是输出神经元为一个得分值;所以需要多个前馈神经网络同时计算每个hi的得分;与我预想的不同,以为一个前馈神经网络就可以输出所有对应的得分,即输出层的维度是与input序列长度一样;(目前的理解);为什么不与预想的一致呢?

然后对所有得分进行归一化,一般选择softmax方法;让权重系数为1

第二阶段:将hi与对应的权重系数相乘得到一个context vector;即注意力值.

通俗理解讲解二

Q、K、V是什么

[PS:本文谈论的Q、K、V只限于seq2seq结构]

  • Q:指的是query,相当于decoder的内容
  • K:指的是key,相当于encoder的内容
  • V:指的是value,相当于encoder的内容

看到这里,是不是只想直呼卧槽,这什么鬼。不急,先看一个例子

例子

由于讨论的是seq2seq任务,于是来看看机器翻译。
假如我们要将我喜欢看电影翻译成I like watching movies,步骤则会如下

  • 使用一种编码方式(如LSTM、CNN、Transformer等)编码中文
  • 使用一种方式解码
    1.机器翻译这个任务中会在解码端给一个开始的标记,如</s>,我们根据这个标记传给解码端,开始生成英文,比如生成了I这个单词,下一步当然是需要生成’like’这个单词,于是这个I将会作为query集去查找,形象话说就是我们需要使用已经有的东西去询问一些事情。
    ** 2.去哪里查找?当然是编码端,也就是那些可以被查找的信息,如果原文在编码中是字向量表示则是我、喜、欢、看、电、影。
    3.找到了返回啥的信息?返回编码端的信息,具体的会将我、喜、欢、看、电、影做一个调整再回传。
    到这里,对于使用Attention机制的seq2seq任务,这么理解我认为是没问题的。



作者:top_小酱油
链接:https://www.jianshu.com/p/7a61533fd73b
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

### Transformer 中 QKV 的作用原理 #### 1. 自注意力机制的核心 Transformer 使用自注意力机制来捕捉输入序列中不同部分之间的关系。这种机制通过查询 (Query, Q)、键 (Key, K) 值 (Value, V) 来实现[^1]。 - **Q(Query,查询)**: 表示当前单词的兴趣方向或关注焦点。它帮助模型决定哪些其他单词对于理解当前单词更重要。 - **K(Key,键)**: 是每个单词自身的特征表示,用来与其他单词的 Query 进行匹配,判断它们的相关性。 - **V(Value,值)**: 提供实际的内容信息。如果某个单词被判定为重要,则它的 Value 将更多地贡献到最终的结果中。 #### 2. 计算过程概述 给定一个句子 “Thinking machines”,为了计算词语间的关联程度: - 首先将每个词转换成三个不同的向量:Q 向量、K 向量以及 V 向量[^3]。 ```plaintext Thinking -> Q_Thinking, K_Thinking, V_Thinking Machines -> Q_Machines , K_Machines , V_Machines ``` - 接下来利用这些向量计算注意力分数。具体来说,就是把每一个 Query 跟所有的 Key 做点积操作得到未标准化的关注得分矩阵 S[i][j]=Q_i * K_j / sqrt(d_k)[^1] ,其中 d_k 是维度大小用于缩放防止梯度消失或者爆炸问题发生;之后再经过 softmax 函数处理使得每列概率总等于1形成权重分布 w_ij=exp(S[i][j])/sum(exp(S[k][j])) [^2]. - 最终一步则是按照上述获得的概率去线性组合对应位置上的 Values 得到最后输出 o_i=sum(w_ij*V_j),这样就完成了单个 token 上下文感知表征构建工作流程描述。 #### 3. 多头注意力机制扩展 除了基本形式外,在实践中还会采用多头并行的方式来增强表达能力而不增加太多参数数量级变化情况下的性能提升效果显著优于单一头部设置方案因为可以允许网络学会从多个子空间角度捕获更丰富的语义模式从而进一步提高整体表现水平达到更好的泛化能力鲁棒特性展现出来满足复杂场景需求特点突出优势明显可见一斑。 ```python import torch import math def scaled_dot_product_attention(query, key, value): dim_key = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(dim_key) # Compute attention score with scaling factor. attn_weights = torch.softmax(scores, dim=-1) # Apply Softmax to get normalized weights. output = torch.matmul(attn_weights, value) # Weighted sum of values based on computed attentions. return output, attn_weights # Return both outputs and attention matrices. # Example usage demonstrating how it works within a single head context setup only here simplified version without batch dimensions etc... queries = torch.randn(2, 4) # Shape: [Seq_len_q, D_model] keys = torch.randn(3, 4) # Shape: [Seq_len_k, D_model] values = torch.randn(3, 5) # Shape: [Seq_len_v, Dim_val] output, _ = scaled_dot_product_attention(queries.unsqueeze(0), keys.unsqueeze(0), values.unsqueeze(0)) print(output.shape) # Output shape should match Seq_len_q x Dim_val i.e., [2, 5]. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值