PUDM:点云上采样 diffusion 模型

PUDM:点云上采样 diffusion 模型

PUDM [A Conditional Denoising Diffusion Probabilistic Model for Point Cloud Upsampling, 2024, CVPR] PUDM 项目地址: https://gitcode.com/gh_mirrors/pu/PUDM

项目介绍

PUDM(Point Cloud Upsampling with Denoising Diffusion Model)是一种基于条件去噪扩散概率模型的开源项目,旨在实现点云数据的高质量上采样。该项目的核心是一个先进的去噪扩散模型,它可以根据输入的低分辨率点云生成高质量的、高分辨率的点云数据。PUDM 的出现为计算机视觉、图形学以及机器人领域的点云处理提供了新的方法。

项目技术分析

PUDM 项目基于深度学习框架 PyTorch 进行构建,它利用了去噪扩散模型(Denoising Diffusion Model,DDM)在生成模型中的优势。DDM 是一种生成模型,通过逐步去噪的方式来生成数据,这使得模型在生成高质量数据方面具有显著的优势。PUDM 采用了条件去噪扩散模型,这意味着它可以基于给定的条件(如输入的低分辨率点云)来生成对应的高分辨率点云。

项目的核心技术创新点包括:

  1. 条件去噪:模型能够根据输入的低分辨率点云数据,生成对应的高分辨率点云。
  2. 扩散概率模型:通过逐步去噪和扩散过程,生成更加细腻和真实的高分辨率点云。

项目技术应用场景

PUDM 的应用场景广泛,主要包括以下几个方面:

  1. 计算机视觉:在三维物体识别、分类和检测中,高分辨率的点云数据可以提供更精确的形状信息。
  2. 计算机图形学:在三维建模和渲染中,高分辨率点云有助于生成更加逼真的三维模型。
  3. 机器人导航:机器人进行环境感知时,高分辨率点云可以提供更加详细的环境信息,帮助机器人更好地理解周围环境。

项目特点

PUDM 项目具有以下显著特点:

  1. 高质量生成:PUDM 生成的点云具有更高的质量,尤其在定性结果(可视化)方面表现突出。
  2. 灵活性:PUDM V2 将实现点数解耦,这意味着模型可以根据需要的点数进行上采样,而不仅仅依赖于上采样率。
  3. 易于部署:PUDM 支持主流的操作系统和深度学习框架,易于在多种环境中部署和使用。

以下是 PUDM 项目的详细说明:

安装

PUDM 需要以下环境配置:

  • Ubuntu 18.04 或更高版本
  • CUDA 11.1 或更高版本
  • PyTorch 1.9.1 或更高版本
  • Python 3.7 或更高版本

安装步骤如下:

conda create -n pudm python=3.7 -y
conda activate pudm

conda install cudatoolkit
pip install nvidia-cudnn-cu11

pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

pip install open3d termcolor tqdm einops transforms3d==0.3.1
pip install msgpack-numpy lmdb h5py hydra-core==0.11.3 pytorch-lightning==0.7.1
pip install scikit-image black usort flake8 matplotlib jupyter imageio fvcore plotly opencv-python
pip install markdown==3.1.0

数据准备

PUDM 需要使用 PU1K 和 PUGAN 数据集,可以从相应的链接下载。数据准备步骤如下:

cd PUDM-main/pointnet2/dataloder
python prepare_dataset.py --input_pts_num 2048 --R 4 --mesh_dir mesh_dir --save_dir save_dir

模型训练与测试

PUDM 提供了预训练模型,用户可以下载并放在指定目录下。训练和测试的步骤如下:

# 训练 PUGAN
cd PUDM-main/pointnet2
python train.py --dataset PUGAN

# 测试 PUGAN
cd PUDM-main/pointnet2
python samples.py --dataset PUGAN --R 4 --step 30 --batch_size 27

PUDM 项目以其先进的去噪扩散模型和高质量的点云生成能力,为相关领域的研究和应用提供了有力的工具。通过不断的技术优化和版本迭代,PUDM 将继续为点云上采样领域带来更多突破。

PUDM [A Conditional Denoising Diffusion Probabilistic Model for Point Cloud Upsampling, 2024, CVPR] PUDM 项目地址: https://gitcode.com/gh_mirrors/pu/PUDM

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

范芬蓓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值