2种算法 - 最大得分的路径数目

该博客介绍了如何解决寻找从右下角出发到左上角的字符 'E' 的最大得分路径问题。给出了两种解法:一是使用循环,时间复杂度为 O(n^2),二是采用递归,同时提供了具体的实现思路和代码示例。对于递归解法,虽然正确但存在较高的时间复杂度导致某些测试用例超时。
摘要由CSDN通过智能技术生成


题目

给你一个正方形字符数组 board ,你从数组最右下方的字符 ‘S’ 出发。

你的目标是到达数组最左上角的字符 ‘E’ ,数组剩余的部分为数字字符 1, 2, …, 9 或者障碍 ‘X’。在每一步移动中,你可以向上、向左或者左上方移动,可以移动的前提是到达的格子没有障碍。

一条路径的 「得分」 定义为:路径上所有数字的和。

请你返回一个列表,包含两个整数:第一个整数是 「得分」 的最大值,第二个整数是得到最大得分的方案数,请把结果对 10^9 + 7 取余。

如果没有任何路径可以到达终点,请返回 [0, 0] 。

示例 1:

输入:board = [“E23”,“2X2”,“12S”]
输出:[7,1]
示例 2:

输入:board = [“E12”,“1X1”,“21S”]
输出:[4,2]
示例 3:

输入:board = [“E11”,“XXX”,“11S”]
输出:[0,0]

提示:

2 <= board.length == board[i].length <= 100

解法一(循环)

解法思路:直接使用循环,因为每个节点依赖于上一个节点,因此从最右下角的节点分别沿着横纵两个方向,一步一步移动到数组开始的左上角。

本算法使用三维数组,在第三维保存对应索引位置的初始值、得分、路径数量和是否可达四个信息,实现算法如下(比赛之后实现的):

时间复杂度为O(n2),空间复杂度O(n2)(由于使用三维数组存储)

public class Solution {
   
    long [,,] intBoard;
    public int[] PathsWithMaxScore(IList<string> board) {
   
        //1. 链表转存到数组中
        int row=board.Count,column=board[0].Length;
        intBoard = new long [row,column,4];
        for(int i=0;i<row;i++)
        {
   
            for(int j=0;j<column;j++)
            {
   
                if(board[i][j] >= '0' && board[i][j] <= '9')
                {
   
                    intBoard[i,j,0] = Convert.ToInt64(board[i][j] - '0');
                }
                else if(board[i][j] == 'E' || board[i][j] == 'S')
                {
   
                    intBoard[i,j,0] = 0;
                }
                else
                {
   
                    intBoard[i,j,0] = -1;
                }
                intBoard[i,j,1] = 0;
                intBoard[i,j,2] 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

放羊郎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值