VS .h 和 .cpp 切换快捷键设置

本文地址:http://blog.csdn.net/t163361/article/details/51859274
最近准备申请新星创作者,需要2000个粉丝关注,觉得文章有用的,请点一下左侧边栏的关注,谢谢。

打开VS后依次选择如下
工具->
选项->
环境->
键盘->

选择 Visual C++ 6 键盘映射方案

显示命令包含 中 输入如下命令
英文版

EditorContextMenu.CodeWindow.ToggleHeaderCodeFile

中文版

编辑器上下文菜单.代码窗口.切换标题代码文件

按快捷键 后 输入想使用的新快捷键就可以了

本人用的alt+o

### 强化学习与传统强化学习的区别 在传统强化学习中,智能体通过与环境互动并依据即时奖励信号优化行为策略[^2]。相比之下,在强化学习中,并不存在显式的奖励机制;相反,该方法依赖于观察专家执行特定任务的过程,从中推导出潜在的奖励结构,进而构建能够模拟这些示范行为的有效政策。 #### 数学建模差异 对于标准形式下的RL问题而言,其核心在于定义状态转移概率以及预期回报函数,以此指导代理者探索最优路径。然而,在IRL框架下,则需额外引入关于未知真实收益特征假设的空间表示法,以便利用最大似然估计或其他统计手段反向解析最有可能引起所见行动模式的目标设定[^1]。 ### 应用场景对比 | 场景描述 | 强化学习适用情况 | 强化学习适用情况 | | --- | --- | --- | | **自动驾驶** | 可用于开发车辆导航系统,使其能够在复杂路况条件下做出合理反应,比如避障、变道等操作[^4]。 | 当获取大量人类司机安全行驶轨迹后,可以尝试恢复那些促使人们采取某些措施背后隐藏的价值观体系,帮助机器更好地理解和适应社会交通规则约束条件。| | **机器人运动规划** | 对机械臂抓取物体动作进行编程时,可以通过试错过程逐渐调整参数直至达到理想效果。 | 如果已经存在熟练工人完成相似工作的录像资料,则可以直接分析视频片段内的肢体活动规律,快速建立起接近人工水平的操作指南而不必经历漫长的学习周期。 | 综上所述,虽然两者都致力于提升自动化系统的性能表现,但在具体实施过程中各有侧重——前者强调自我发现最佳方案的能力培养,后者则更倾向于借鉴已有经验成果加速知识迁移进程。 ```python # 这里仅作为示意用途展示两种不同类型的伪代码实现思路: # 强化学习示例:Q-learning更新规则 def update_q_value(state, action, reward, next_state): best_next_action = np.argmax(q_table[next_state]) td_target = reward + discount_factor * q_table[next_state][best_next_action] td_delta = td_target - q_table[state][action] q_table[state][action] += alpha * td_delta # 强化学习示例:基于最大熵原则的最大似然估计 from scipy.optimize import minimize def max_ent_irl(features_map, trajectories, policy, learning_rate=0.01, n_iter=100): theta = np.random.rand(len(features_map)) def gradient(theta): expected_features = get_expected_svf(policy, features_map) empirical_features = sum([features_map[s,a] for traj in trajectories for s,a,_ in traj]) / len(trajectories) grad = empirical_features - expected_features return grad for _ in range(n_iter): delta_theta = learning_rate * gradient(theta) theta += delta_theta return theta ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值