笔记-Shader所需的数学基础

这篇笔记探讨了Shader编程中不可或缺的数学基础——点、矢量和标量。点表示空间位置,无大小;矢量包含模和方向,如速度;标量只有大小,如距离。矢量运算包括标量乘法、矢量除法、加法和减法,且矢量的模是其长度。此外,单位矢量是归一化的矢量。这些基础知识对于理解Shader中的位置计算和向量操作至关重要。
摘要由CSDN通过智能技术生成

Shader所需的数学基础笔记|点、矢量、标量

  • 关于点、矢量、标量:

    —->(Point)是空间中的位置,无大小、宽度概念 二维点: P=(Px,Py) 三维点: P=(Px,Py,Pz)
    矢量—->(Vector,数学也叫向量),矢量是空间中包含方向的有向线段。“速度”就是一种矢量(有方向,有速度),矢量一般用字母 “V” 表示
    标量—->用通俗的说法,标量是只有大小,没有方向的量。“距离”就是一种标量

  • 矢量描述:

    1.矢量的指的是这个矢量的长度,矢量可以是任意的非负数
    2.矢量的方向则描述了这个矢量在空间中的指向
    3.矢量的表示方法与点类似,可以用 V=(x,y) 来表示二维矢量,用 V=(x,y,z) 表示三维矢量,用 V=(x,y,z,w) 来表示四维矢量
    ps:点与矢量的关系:可以认为任何一个点都可以表示成一个从原点出发的矢量

  • 矢量运算:
    矢量不能与标量进行相加/相减的运算(无法将速度和距离相加对吧?),但可以对他们进行相乘运算,结果可能是一个(长度不同,方向可能相反的…)新矢量

    乘法公式: ( k 代表标量 v 代表矢量)

    kv=(kvx,kvy,kvz)

    ps:对于乘法 矢量和标量可以互换

    矢量(v)也可以被一个非零的标量(k)除,等同于和这个标量的倒数相乘:

    除法公式:

    vk=(x,y,z)k=1k(x,y,z)=(xk,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值