TwoSampleMR-R教程 两样本孟德尔随机化(原来真的就是这么简单……)

本文介绍了如何使用R语言的TwoSampleMR库进行两样本孟德尔随机化分析,包括从数据读取到结果整合的全过程。强调了工具变量的选择、结局变量的提取、回文序列的判断以及数据预处理的重要性。同时,文章讨论了MR分析的不同方法、敏感性分析以及如何解释变异的影响。
摘要由CSDN通过智能技术生成

1. 工具变量

install.packages("remotes")
remotes::install_github("MRCIEU/TwoSampleMR")##To update the package just run the command again
install.packages("readxl")

读取本地文件

  1. 方法1:先改变量名,然后format_data()读取自己整理好的工具变量文件,命名如下图。注意,命名区分大小写,不正确则无法读取
    在这里插入图片描述
##name:SNP	beta	se	effect_allele	eaf	exposure	chr	position	gene	pval	samplesize	mr_keep
HcyIV <- as.data.frame(read_excel("IV_Hcy.xlsx"))
library(TwoSampleMR)
Hcy_exp_dat <- format_data(HcyIV, type="exposure")
  1. 方法2:直接用read_exposure_data()读,然后code改。尽可能提供多的信息,方便后期画图
HcyIV.2 <- read_exposure_data(
  filename = "IV_Hcy2.csv",
  sep = ",",
  snp_col = "SNP",
  beta_col = "beta",
  se_col = "se",
  effect_allele_col = "effect_allele",
  #other_allele_col = "a2",
  eaf_col = "eaf",
  pval_col = "pval",
  #units_col = "Units",
  #gene_col = "Gene",
  samplesize_col = "samplesize"
)
  1. 最后改好自己的暴露名
Hcy_exp_dat$exposure <- "Homocysteine"

工具变量必须为独立变量。根据参考文献选择ref人群和r2

评论 49
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值