数学笔记(一)之列主序矩阵

引子 数学相关的东西,随便记记 :)~

对于矩阵,OpenGL采用列主序(column-major order)存储,之前对于这个概念有些模糊,后来又了解了一些相关知识,在此一记~

首先是数学概念上的矩阵,这是根据标准定义的,譬如一个4*4的矩阵,可表示为:

  而采用列主序存储,则可以理解为一种矩阵在计算机中的实现方式,或者更确切的说,是存储方式,即虽然在数学上明确定义了矩阵的表示方式,但是在计算机中怎么实现(或者说存储)则是另一个问题,列主序存储就是这个问题的一种解决方法~(感觉颇像UnicodeUTF-8的关系:))

  而所谓列主序的方式,就是以矩阵列为优先来存储矩阵元素,拿C/C++中的数组举例,如果要存储上述的4*4矩阵,那么内存中的布局应该是这个样子的~

  更具体的例子可以参考Cocos2d-x中的Mat4类(来自于GamePlay3D),譬如矩阵变换(列)向量:

inline void MathUtilC::transformVec4(const float* m, const float* v, float* dst)
{
    // Handle case where v == dst.
    float x = v[0] * m[0] + v[1] * m[4] + v[2] * m[8] + v[3] * m[12];
    float y = v[0] * m[1] + v[1] * m[5] + v[2] * m[9] + v[3] * m[13];
    float z = v[0] * m[2] + v[1] * m[6] + v[2] * m[10] + v[3] * m[14];
    float w = v[0] * m[3] + v[1] * m[7] + v[2] * m[11] + v[3] * m[15];
    
    dst[0] = x;
    dst[1] = y;
    dst[2] = z;
    dst[3] = w;
}

  拿上面 的计算来说,其所取的矩阵元素索引分别为0,4,8,12,正是m11,m12,m13以及m14 ~

  That's it ~

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值