1. SBAM介绍
SBAM(Softmax-based Attention Module)和CBAM(Convolutional Block Attention Module)都是用于增强神经网络在特征提取阶段的注意力机制。
SBAM 的优势:
(1). 综合性注意力机制:
通道注意力(Channel Attention):通过自适应平均池化和卷积操作,使得网络能够动态地学习每个通道的重要性,从而增强特定通道的响应,有助于捕捉到更丰富的通道相关特征。
空间注意力(Spatial Attention):结合平均池化和最大池化的特征图,学习空间位置之间的相关性,以便更好地聚焦在重要的空间区域上。
Softmax 注意力(Softmax Attention):利用 Softmax 函数对平均池化和最大池化后的特征进行加权,进一步强化了网络对每个像素位置的重视程度,使得网络能够在像素级别进行精细的注意力调控。
(2). 多层次的特征增强:
SBAM 结合了通道、空间和像素级的注意力机制,使得网络在不同层次上都能够进行有效的特征增强,这种多层次的注意力机制有助于提升网络在复杂场景下的特