YOLOv11改进 | 独家创新- 注意力篇 | YOLOv11引入CBAM的二次创新之SBAM注意力(全网独家创新)

1. SBAM介绍

 SBAM(Softmax-based Attention Module)和CBAM(Convolutional Block Attention Module)都是用于增强神经网络在特征提取阶段的注意力机制。

          SBAM 的优势:

         (1). 综合性注意力机制:
          通道注意力(Channel Attention):通过自适应平均池化和卷积操作,使得网络能够动态地学习每个通道的重要性,从而增强特定通道的响应,有助于捕捉到更丰富的通道相关特征。
           空间注意力(Spatial Attention):结合平均池化和最大池化的特征图,学习空间位置之间的相关性,以便更好地聚焦在重要的空间区域上。
          Softmax 注意力(Softmax Attention):利用 Softmax 函数对平均池化和最大池化后的特征进行加权,进一步强化了网络对每个像素位置的重视程度,使得网络能够在像素级别进行精细的注意力调控。

          (2). 多层次的特征增强:
         SBAM 结合了通道、空间和像素级的注意力机制,使得网络在不同层次上都能够进行有效的特征增强,这种多层次的注意力机制有助于提升网络在复杂场景下的特

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值