TopGraph融合“知识图谱+大模型”,让知识抽取更容易

本文介绍了途普智能采用的知识图谱+大模型技术,如何有效处理企业中的结构化和非结构化数据,特别是政务领域的政府公文中,通过减少样本标注量和提高知识抽取精度,降低非结构化数据处理的门槛。下期将展示具体应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在信息爆发式增长的时代,数据如同星河般遍布在企业的各个业务角落,形成了一个庞大而复杂的信息宇宙。这些数据,既有条理分明的结构化数据,也有介于完全结构化与非结构化之间的半结构化数据,更有那些复杂且形式多样的非结构化数据,是企业数据资产重要组成部分。

其中非结构化数据包括办公文档、多媒体文件、报告、合同等,因为缺乏统一的结构化标准,难以提炼出有价值的知识并加以利用,所以一直是企业构建知识图谱的一大难题。

“TopGraph+大模型”让知识抽取更智能、更高效

为了应对这些挑战,途普智能采用了“知识图谱+大模型”融合的技术。公司在知识图谱构建领域具有显著的技术优势,其TopGraph知识构建系统结合了自然语言处理、机器学习、人工智能、知识图谱、图数据库等众多技术,可实现对结构化数据和非结构化数据的知识图谱自动化构建。产品提供了可视化标注工具和开放化的模型训练中心,其中内置了数十种抽取模型。

图片
TopGraph知识构建系统

“TopGraph+大模型”在政府公文中的应用价值

以政务领域为例࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值