大模型+知识图谱在工业领域落地的4大场景

对于 AI 技术,大家热聊的话题超 90% 都是围绕大模型,而知识图谱则是上一波 AI 浪潮中比较热门的技术。

今天特邀行业专家,探讨关于大模型和知识图谱在工业领域的一些落地实践。主要分为四个部分展开:大模型和知识图谱的关系、大模型+知识图谱双擎的原理、大模型+知识图谱双擎的工业应用场景、大模型+知识图谱双擎在工业领域的成功案例。

01

大模型与知识图谱的关系

大模型和知识图谱到底是什么呢?

人类有两种主要的思维模式,一种是快速而直觉的,另一种是缓慢而深思熟虑的,这种说法起源于并广泛存在于古老的哲学和心理学著作中。通常用“系统 1 ”和“系统 2 ”来表示以上两种类型的认知过程,诺贝尔奖获得者心理学家丹尼尔·卡尼曼(Daniel Kahneman)在其著作《思考,快与慢》中详细介绍了两种认知系统的区别之处,系统 1 是直觉性、快速、大容量、并行、无意识、情境化和自动化的,其依赖情感、记忆和经验迅速作出判断,是类似于动物认知的内隐知识;系统 2 则是分析性、缓慢、有限容量、串行和抽象的,其受到规则的约束,依赖认知能力的运作,是人类进化后期习得的外显知识。目前深度学习包括大模型都在做系统1的工作,而知识图谱擅长做系统 2 的工作。

人工智能的发展有两大经典的流派,一个叫符号主义,一个叫连接主义。知识图谱是经典的符号主义,把知识符号化,通过三元组描述知识和知识之间的关系,再构建成巨大的知识网络,这是知识的显性表达。大模型是连接主义的最新成果,但是它的知识是隐性表达,知识直接存储到模型的神经网络参数中,人不可读。这两种知识表达方式有巨大的差别,也有各自的优势。

  • 大语言模型的专业领域知识有限,特别是工业领域有大量的数据还未清晰甚至数字化;

  • 大语言模型存在幻觉问题,这个问题基本无法通过训练从模型训练上解决;

  • 大语言模型的知识运维困难,训练成本高且校验成本高;

  • 大语言模型无法做严密的知识推理;

  • 知识图谱存在构建成本高的问题。

我们的想法是将两者结合起来,用知识图谱解决领域知识缺失、领域知识运维、领域知识推理和大模型幻觉的问题,用大模型解决知识图谱构建成本高的问题,实现大模型和知识图谱双擎互相增强。

02

大模型+知识图谱双擎原理

知识图谱和大模型两个技术的结合,会产生 1 + 1 >2 的效果。基于这样的技术思路,我们提出了企业级的工业智能知识服务平台,核心的两大底层技术就是知识图谱和大模型。

上图是整个知识服务平台的技术架构,围绕业务全生命周期,包含情报分析、研发设计、工业生产、运营管理、市场推广、售后服务的业务完整链条,因为底层的技术架构是相通的,知识图谱把各个部门的知识进行统一的关联,所以就能产生 1 + 1 > 2 的效果。

这个知识服务平台除了大模型和知识图谱双擎,还有两大核心业务能力。

第一个核心是数据集成。可以将多模态的数据集中化的管理,包括文档、视频、图片等等,只要是企业内部能够积累的数据,都可以通过平台采集,再做自动知识抽取,可以大大降低员工的使用门槛。

第二个核心是持续学习。底层的知识图谱和大模型之间能够互相的增强,而且是一个持续学习的过程。这里学习包括两个方面,一个是大模型的迭代,另一个是知识图谱的迭代。前者一是基于知识库中数据做模型微调,二是通过用户反馈不断优化提示词;后者主要是基于新增数据的变化,自动更新知识图谱本体,由本体驱动图谱的更新。

当前大模型在应用过程中,对于幻觉问题的解决,知识图谱与大模型结合是一个比较有效的解决思路,就是 GraphRAG 。

我们知道大模型应用于知识库场景,目前最有价值的就是 RAG ,这种方式能通过知识外挂最有性价比的解决大模型领域知识有限的问题。RAG 的工作流程是,当大模型接收到用户提问后,会先去外挂的知识库里找到相关的文本分片,再把文本分片输入给大语言模型,最后大语言模型再结合文本分片内容回答问题。受限于分文分片的召回方式, RAG 能利用的知识粒度只能是段落级别,这会导致两个问题,一是很难找到一个合适的段落分片策略兼顾准确率和召回率,二是仅能回答基于有限段落原文的简单问题。

GraphRAG 可以把文档的知识粒度从段落级别拆成实体级别,其中的关键就是将文档知识构建成知识图谱。用户提问后,先在知识图谱中找到问题相关的实体,通过知识图谱更精准的找到相关的知识内容。对于专业技术要求比较高的领域,GraphRAG 的方式能更好地获取到到更专业的结果,原因就在于知识的颗粒度更细,能够更好地通过用户的问题找到相关的、准确的知识点,再把这些知识点作为提示词,输入到大语言模型中,输出的结果往往就会更精准。

我们在 GraphRAG 的实践过程中,相比于常规的 GraphRAG ,我们还加入了用户意图推理和第三方知识图谱利用两部分内容。

例如用户提问“刚出生的小孩可以接种肝炎疫苗吗”,这里包含两个重要的语义,一个是“刚出生的小孩”在专业用语中是“新生儿”;另外一个是“肝炎”,肝炎其实是一类疾病的总称,也分很多不同类型的疾病,比如说叫甲肝、乙肝、丙肝等等。通过知识图谱增强,把“刚出生的小孩”变成规范化的描述“新生儿”,把“肝炎”做知识推理得到肝炎包含“慢性乙型肝炎”、“丙型肝炎”等,然后把这些知识合并到一起,实现对用户意图的拓展,然后再用拓展的意图走 GraphRAG 的流程,就能得到一个更好的结果。

03

大模型+知识图谱的工业应用场景

场景一:研发场景-设计方案智能管理。

不少工业企业都有非常多的设计文档、设计方案等文档,可能是 CAD 文件,也可能是一些文档等等,尤其是研发型的单位,内部可能有几万份、几十万份甚至上百万份的图纸内容。常规的检索只能通过文件名、文件简介等进行全文检索,如果需要深入到 CAD 文件的内容中查找,例如查找“同时包含某两个零部件的设计方案”就非常困难。我们通过知识图谱加上大语言模型的方式,可以很好地解决这一问题,提前把 CAD 文件中的关键部件构建成知识图谱,这样在搜索包含某个部件的设计图纸,就可以直接对图纸内容进行定位,非常高效。

场景二:生产场景-设备故障诊断。

工业型企业中,产线的任何一个故障,对生产的影响是非常大的,哪怕能缩短一点故障诊断的时间,对企业的帮助也是非常大。所以可以结合产品的运维手册,以及前期积累的故障报告等,把这些作为知识库,当出现新的故障时,通过大模型的交互,逐渐把故障现象和故障原因结合起来,然后推荐相关的故障解决思路,可以帮助运检人员更快地对故障进行排除。这是在工业场景中,非常典型的一类大模型与知识图谱结合的应用。

场景三:售前场景-订单智能分析

对于做非标产品的企业,产品的组合类型往往非常办法,销售往往无法全部了解。当销售接到客户的需求单,需要判断是否能做,以及用哪些产品能匹配,有时需求单会很长,可能几页纸,甚至十几页纸,经验稍浅的销售对需求的把握不是特别准确,那么就可以通过 AI 技术对销售订单的每个功能项、需求项做具体的分析,匹配需求与产品,同时对兼容性、库存等风险因素做出预警。

场景四:售前/售后场景-智能客服

智能客服主要是售前和售后场景。售前实现智能导购,售后实现设备使用的回答,或者是故障的简单排除等等,这些都是比较典型的应用场景。特别是有出海业务的企业,涉及到多语言的处理能力,企业不可能在搭建售后团队时,每个小语种都招一个人,通过大语言模型,企业只需要维护一套标准知识库,大语言模型可以自动地理解各语种的问题,再基于标准的中文手册,自动以对应语种来进行回复,不仅可以提高效率,同时可以极大地降低成本。

04

大模型+知识图谱的案例实践

第一个案例是技术售前场景实践。

基于产品手册构建知识图谱,再把各类手册录入到知识库中进行外挂,最终实现设备运维助手的构建。

可以看到这里有很多问题,如果只是用常规大模型 RAG 形式进行回答,很难回答得很全面,核心原因在于没有对用户问题中蕴含的领域知识进行推理。例如用户提问某系列产品断路器的附件能否通用,如果不通过知识推理知道某系列产品包含的所有产品型号,那模型回答的答案通常是不准确或者不全面的,所以优先通过知识图谱进行推理是非常重要的环节。

第二个案例主要知识库的构建应用。

知识库的一个大核心的价值点就是实现企业经验或者知识的积累。案例中的企业要去做跨部门的经验传承,海外部门在零部件生产和设计上有非常多的经验,但现在随着业务转移,海外工厂业务迁到国内工厂,那么相关的经验就需要由海外的老师傅传递到新的工人身上。结合 Agent 技术,可以完成只有人类专家才能掌握的复杂问题解决。

我们用了“PDCA”的核心思路,PDCA 对于工业企业来说用得非常多,所以在知识库建设时,同样可以用这套指导思路来进行建设。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我需要回答用户关于知识图谱语言模型结合应用或实现方式的问题。首先,我需要结合用户提供的引用资料,整理出相关的示例和实现方法。用户提到了四个引用,其中引用[1]提到融合应用在搜索引擎、推荐系统、智能问答和语义分析等场景。引用[2]和[3]则涉及企业级实现和模型工程实践。引用[4]强调大模型的参数量优势。 首先,我应该从应用场景入手,列举几个具体的结合示例,比如智能问答增强、动态推荐系统、企业知识管理和搜索增强。每个示例需要说明如何结合知识图谱和LLM,可能的结构是:场景描述、结合方式、技术优势、引用对应的文献。例如,在智能问答中,知识图谱提供结构化数据,LLM处理自然语言,提升准确性,引用[1]和[3]。 接下来是技术实现方式,需要分步骤说明,如知识抽取与对齐、联合训练、提示工程、混合推理等。引用[2]提到企业级实现,可以在这里引用。例如,知识抽取部分可以提到使用LLM从文本中提取实体关系,再构建知识图谱,引用[2]和[3]。 然后,需要举出实际案例,如医疗领域、金融风控、教育智能体,具体说明应用方式和效果,引用相关的文献,比如引用[1]中的搜索引擎和推荐系统案例。 最后,生成相关问题,确保问题覆盖技术挑战、评估方法、企业落地难点、多模态结合等。注意使用中文,保持结构清晰,段落分明,正确使用引用标注,确保每个引用在相应位置被提及。同时,检查LaTeX格式是否正确,但用户的问题中没有数学表达式,所以可能不需要使用。但如果有提到模型参数等,如引用[4]中的参数量,可以用行内公式表示,例如$10^{10}$参数。 需要避免使用Markdown格式,保持自然的中文叙述。确保每个部分逻辑连贯,引用标注自然嵌入在句尾。最后,确认所有引用都正确对应,没有遗漏或错误。</think>知识图谱语言模型的结合应用及实现方式可以从以下几个角度分析: --- ### 一、核心应用场景与示例 1. **智能问答增强** - **场景**:通过知识图谱提供结构化知识,结合语言模型(LLM)的生成能力,回答复杂问题。 - **实现**:LLM解析用户问题后,调用知识图谱检索实体关系,生成逻辑严谨的回答。例如,医疗问答中,LLM结合疾病-症状知识图谱,生成诊断建议[^1]。 - **优势**:减少LLM的“幻觉”,提升回答准确性[^4]。 2. **动态推荐系统** - **场景**:电商或内容平台中,知识图谱描述用户-商品-内容的关系,LLM生成个性化推荐理由。 - **实现**:基于知识图谱的路径推理(如“用户A购买过商品B→同类商品C”),LLM生成自然语言解释[^2]。 3. **企业知识管理** - **场景**:企业内部文档通过知识图谱结构化,LLM辅助员工快速检索信息。 - **示例**:使用LLM解析员工查询,从知识图谱中提取流程、制度等实体,生成操作指南[^3]。 --- ### 二、技术实现方式 1. **知识抽取与对齐** - LLM从非结构化文本(如文档、对话)中提取实体和关系,构建或补充知识图谱[^2]。 - 技术示例: ```python # 使用LLM抽取实体关系 prompt = "从文本中提取实体及关系:'苹果公司由史蒂夫·乔布斯创立于1976年。'" response = llm.generate(prompt) # 输出:{"head":"苹果公司", "relation":"创始人", "tail":"史蒂夫·乔布斯"} ``` 2. **联合训练与微调** - 将知识图谱嵌入(如TransE、GraphSAGE)与LLM的文本表示联合训练,增强模型对结构化知识的理解[^4]。 3. **提示工程(Prompt Engineering)** - 在LLM的输入中嵌入知识图谱查询结果,例如: ``` 问题:量子计算的主要应用领域是? 知识图谱检索结果:[量子计算]-[应用领域]->[密码学、药物研发] LLM生成答案:量子计算可应用于密码学和药物研发等领域。 ``` 4. **混合推理框架** - LLM处理自然语言逻辑,知识图谱提供事实约束,例如在司法案例推理中,LLM生成法律观点,知识图谱验证法条引用是否准确[^1]。 --- ### 三、实际案例 1. **医疗领域** - **应用**:将疾病、药品、治疗方案构建为知识图谱,LLM根据患者症状生成初步诊断并推荐检查项目。 - **工具**:开源框架如DeepKE用于知识抽取,Streamlit构建交互界面[^2]。 2. **金融风控** - **实现**:知识图谱描述企业股权关系,LLM分析财报文本,识别潜在风险(如关联交易)。 --- ### 四、挑战与未来方向 - **挑战**:知识图谱的动态更新、LLM与图谱的实时交互效率、多模态知识融合(如图像、表格)。 - **趋势**:轻量化知识图谱嵌入、基于LLM的自动化图谱构建。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值