GPS从入门到放弃(十六)--- 卫星时钟误差和卫星星历误差

本文详细介绍了GPS系统中卫星时钟误差和卫星星历误差的概念及影响,包括卫星钟差的二阶多项式模型、相对论效应修正,以及星历误差的类型和消除方法。通过理解这些误差,可以更好地进行GPS定位和误差校正。
摘要由CSDN通过智能技术生成

GPS从入门到放弃(十六)— 卫星时钟误差和卫星星历误差

卫星时钟误差

GPS卫星时钟误差(简称卫星钟差)是指GPS卫星时钟与GPS标准时间之间的差值。尽管GPS卫星采用了高精度的原子钟来保证时钟的精度,具有比较长期的稳定性;但原子钟依然有频率偏移和老化的问题,导致它们与GPS标准时之间会存在一个差异。这个偏差是必须加以修正的。当然其他的GNSS系统如北斗也会有类似的问题,这里我们仅以GPS为例说明。

GPS的接口说明文档中用一个二阶多项式模型来描述卫星钟差。卫星时钟在GPS时间为 t t t 时的卫星钟差 Δ t s \Delta t_s Δts可以表示为:
Δ t s = a f 0 + a f 1 ( t − t o c ) + a f 2 ( t − t o c ) 2 + Δ t r \Delta t_s = a_{f0} + a_{f1}(t-t_{oc}) + a_{f2}(t-t_{oc})^2 + \Delta t_r Δts=af0+af1(ttoc)+af2(ttoc)2+Δtr

其中 a f 0 , a f 1 , a f 2 a_{f0}, a_{f1}, a_{f2} af0,af1,af2 为系数, t o c t_{oc} toc 为时钟数据的参考时间, t t t 为我们要计算的时刻, Δ t r \Delta t_r Δtr 为相对论效应校正项。

GPS导航电文的第一子帧中有这几个参数,我们只需要解出导航电文然后按照这个公式计算即可得到卫星时钟误差。

需要注意的是对 t − t o c t-t_{oc} ttoc 的值的计算:若其大于 302400 秒,则需要将其减去 604800 秒;若其小于 -302400 秒,则要将其加上 604800 秒。这么做的原因是GPS时间在每周末重置归零,我们需要保证其值在 -302400 ~ 302400 之间。

下面说一下对于式中的相对论效应修正项的处理。相对论效应包含狭义相对论效应和广义相对论效应。尽管GPS卫星已经按照相对论效应对时钟频率进行了调整,但由于卫星轨道并非是规则的圆形,而是椭圆形,所以相对论效应在不同轨道位置对时钟的频率影响大小是不同的,因此还需要修正。

GPS的接口说明文档中给出的相对论修正项为:
Δ t r = F e A sin ⁡ E k \Delta t_r = F e \sqrt{A} \sin E_k Δtr=FeA sinEk

其中 F = − 2 μ c 2 F = \frac{-2\sqrt{\mu}}{c^2} F=c22μ

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值