机器/深度学习
hairuiJY
在不归路上愈走愈远!
展开
-
深度学习笔记---摆数操作 NCHW和NHWC区别
深度学习中,经常出现摆数的要求; 经常会对数据的不同格式出现疑惑,这里记录下来; 说到的NHWC或者 NCHW其中每个代表的含义如下: N代表数量, C代表channel,H代表高度,W代表宽度。 1、NCHW其实代表的是[W H C N], 第一个元素是000,第二个元素是沿着w方向的,即001,这样下去002 003,再接着呢就是沿着H方向,即004 005 006 007…这样到019后,...原创 2020-04-09 23:40:56 · 6171 阅读 · 0 评论 -
查看cudnn和cuda版本
1、查看cuda版本 cat /usr/local/cuda/version.txt 2、查看cudnn版本 cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 根据输出判断:eg: #define CUDNN_MAJOR 5 #define CUDNN_MINOR 1 #define CUDNN_PATCHLEV...原创 2019-10-11 15:24:49 · 1647 阅读 · 0 评论 -
tensorflow 环境安装
tensorflow安装: pip install tensorflow -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com keras安装: pip install keras -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com ...原创 2019-09-23 21:12:09 · 163 阅读 · 0 评论 -
Tensorflow安装出现错误: Cannot uninstall wrapt
问题复现: 解决方案: pip install wrapt --ignore-installed原创 2019-09-23 20:52:23 · 946 阅读 · 0 评论 -
RCNN/SPP/FAST RCNN/FASTER RCNN/YOLO/SSD算法简介
RCNN: RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化。 算法可以分为四步: 1)候选区域选择 Region Proposal是一类传统的区域提取方法,可...转载 2018-08-26 23:43:13 · 302 阅读 · 0 评论 -
卷积神经网络在图像分割中的进化史:从R-CNN到Mask R-CNN
转自量子心 卷积神经网络(CNN)不仅能用来对图像进行分类,还在图像分割任务重有着广泛的应用。 DhruvParthasarathy就职于Athelas,一家专注于深度学习技术的医疗健康公司。他在Medium上发布了一篇博客文章,介绍了在具体的图像分割任务中如何应用卷积神经网络,来得到更好的效果。 以下内容编译自Parthasarathy文章: 自从深度学习鼻祖Geoff Hinton转载 2017-10-26 08:22:03 · 4001 阅读 · 0 评论 -
机器学习
摘自:一位大牛的回答 图1 机器学习界的执牛耳和互联网界大鳄的联姻 这幅图上的三人是当今机器学习界的执牛耳者。中间的是Geoffrey Hinton, 加拿大多伦多大学的教授,如今被聘为“Google大脑”的负责人。右边的是Yann LeCun, 纽约大学教授,如今是Facebook人工智能实验室的主任。而左边的大家都很熟悉,Andrew Ng,中文名吴恩达,斯坦福大学副教原创 2017-11-11 10:08:38 · 533 阅读 · 0 评论 -
图像识别和卷积神经网络架构原理
转自:机器之心 引言 先坦白地说,有一段时间我无法真正理解深度学习。我查看相关研究论文和文章,感觉深度学习异常复杂。我尝试去理解神经网络及其变体,但依然感到困难。 接着有一天,我决定一步一步,从基础开始。我把技术操作的步骤分解开来,并手动执行这些步骤(和计算),直到我理解它们如何工作。这相当费时,且令人紧张,但是结果非凡。 现在,转载 2017-10-24 16:21:04 · 8240 阅读 · 0 评论 -
图像处理和卷积神经网络架构
https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650728746&idx=1&sn=61e9cb824501ec7c505eb464e8317915&scene=0#wechat_redirect 感谢机器之心的翻译!保存下来以便以后复习方便一些! 近日,Dishashree Gupta 在 Analyticsvidh转载 2017-10-14 14:33:15 · 3015 阅读 · 0 评论 -
MATLAB下跑Faster-RCNN+ZF实验时如何编译自己需要的external文件
转自:http://blog.csdn.net/qq_32224767/article/details/69945733 本篇文章主讲这篇博客中的(http://blog.csdn.net/sinat_30071459/article/details/50546891)的这个部分,如图所示 注:截图来自 小咸鱼_ 的博客。 也就是说本文重点教你如何去编转载 2017-11-08 20:39:43 · 508 阅读 · 2 评论 -
An Intuitive Explanation of Convolutional Neural Networks
CNN&RELU&POOL 感觉没有比这篇文章讲的更详细了:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ What are Convolutional Neural Networks and why are they important? Convolutional Neural Networks转载 2017-10-22 21:08:52 · 724 阅读 · 0 评论 -
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文笔记
http://blog.csdn.net/bailufeiyan/article/details/50575150(感谢大神们) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 这篇文章讲述了 Faster R-CNN,介绍了 RPN、Translation-Invar转载 2017-11-07 18:09:29 · 297 阅读 · 0 评论 -
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
http://www.cnblogs.com/skyfsm/p/6806246.html(没看一遍都会有新的收获,感谢大神们的总结,愿大神们更大神) object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围转载 2017-11-07 17:55:21 · 281 阅读 · 0 评论 -
计算机视觉识别简史:从 AlexNet、ResNet 到 Mask RCNN
转自:http://www.dataguru.cn/article-11219-1.html 最近,物体识别已经成为计算机视觉和 AI 最令人激动的领域之一。即时地识别出场景中所有的物体的能力似乎已经不再是秘密。随着卷积神经网络架构的发展,以及大型训练数据集和高级计算技术的支持,计算机现在可以在某些特定设置(例如人脸识别)的任务中超越人类的识别能力转载 2017-11-07 16:38:19 · 470 阅读 · 0 评论 -
机器学习算法简介
http://blog.csdn.net/solomon1558/article/details/41760207 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 一、学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。转载 2017-10-17 21:05:53 · 380 阅读 · 0 评论