计算机视觉
文章平均质量分 57
hairuiJY
在不归路上愈走愈远!
展开
-
opencv源码---imread、cvLoadImage、waitKey、imshow函数源码解读
参考:https://blog.csdn.net/hujingshuang/article/details/47184717https://blog.csdn.net/kuweicai/article/details/73395018原创 2021-11-30 21:52:50 · 418 阅读 · 0 评论 -
calibrateCamera() 原理
Camera CalibrationThe functions in this section use a so-called pinhole camera model. In this model, a scene view is formed by projecting 3D points into the image plane using a perspective transformat...转载 2018-03-04 01:31:22 · 10985 阅读 · 5 评论 -
RANSAC与LSP
Ransac和最小二乘法都用于模型的最优估计;RANSAC是考虑局部有用的那些数据,取有用数据的模型;LSP考虑的是全局数据,取全局误差最小的模型原创 2018-06-24 17:30:37 · 454 阅读 · 0 评论 -
PQ(product quantization) 算法---(一)
转自:http://vividfree.github.io/ 1. 引言Product quantization,国内有人直译为乘积量化,这里的乘积是指笛卡尔积(Cartesian product),意思是指把原来的向量空间分解为若干个低维向量空间的笛卡尔积,并对分解得到的低维向量空间分别做量化(quantization)。这样每个向量就能由多个低维空间的量化code组合表示。为简洁描述起见,...转载 2018-07-08 16:47:33 · 34895 阅读 · 1 评论 -
PQ(product quantization) 算法---(二)
PQ(productquantization)算法:乘积量化,这里的乘积为笛卡尔积;从字面理解包括了两个过程特征的分组量化过程和类别的笛卡尔积过程。它属于ANN(approximatenearest neighbor)算法。与它相关的算法有E2LSH(EuclideanLocality-SensitiveHashing), KD-trees,K-means。假设有一个数据集: 由n个D维向量组成(...原创 2018-07-08 17:14:38 · 5986 阅读 · 0 评论 -
动态规划算法---(一)
摘自网络:————————————题目:有一座高度是10级台阶的楼梯,从下往上走,每跨一步只能向上1级或者2级台阶。要求用程序来求出一共有多少种走法。比如,每次走1级台阶,一共走10步,这是其中一种走法。我们可以简写成 1,1,1,1,1,1,1,1,1,1。再比如,每次走2级台阶,一共走5步,这是另一种走法。我们可以简写成 2,2,2,2,2。...原创 2018-07-29 11:57:48 · 564 阅读 · 1 评论 -
手眼标定算法---Sai-Lenz(A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibrati)
本文主要是讲解经典手眼标定问题中的TSAI-LENZ 文献方法,参考文献为“A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration” 转自:https://blog.csdn.net/YunlinWang/article/details/51622143手眼标定问题描述 ...转载 2018-08-11 12:16:33 · 6189 阅读 · 2 评论 -
手眼标定算法---Navy算法(Robot sensor calibration: solving AX=XB on the Euclidean group)
本文主要介绍Frank C. Park and Bryan J. Martin在文献Robot sensor calibration: solving AX=XB on the Euclidean group中提出的手眼标定算法,该算法也被称为Navy手眼标定算法,该算法的主要创新点为利用李群理论的知识来求解手眼标定经典方程。该算法基于OpenCV的C++版本程序可去CSDN资源下载,MATLAB...转载 2018-08-11 12:30:35 · 10835 阅读 · 9 评论 -
Flann特征点匹配简述(Lowe's algorithm)
/***好记性不如烂笔头,记下来便于以后复习***/ 特征匹配的结果会得到两个特征集合的对应关系列表。第一组特征集被称为训练集(train),第二组被称为查询集(query)。Flann 在调用匹配函数之前,为了提高匹配速度,训练一个匹配器。训练阶段是为了优化cv::FlannBasedMatcher的性能。train类将会建立特征集的索引树。将 query image...原创 2018-10-04 18:34:00 · 16674 阅读 · 2 评论 -
学习Kalibr工具--Camera与IMU联合标定过程
上一节介绍了,用kalibr工具对camera进行标定的操作流程,在camera标定之好之后,进行camera与IMU进行联合标定的操作的学习,即求取相机和IMU 之间的转换关系(坐标系之间的相对位姿矩阵);需要先知道相机的内外参数(单目的内外参数和双目的内外参数),用kalibr工具进行 单目标定或者双目标定上一节已介绍。这里以双目+IMU为例进行介绍相机和IMU 的联合标定,也叫多传感器融...原创 2019-01-10 18:05:46 · 6155 阅读 · 2 评论 -
opencv 学习--- 双线性插值算法原理简述
***好记性不如烂笔头*** 转自: https://www.cnblogs.com/yssongest/p/5303151.html1,原理 在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度,运用比较广泛。 越是简单的模型越适合用来举例子,...转载 2019-01-12 13:19:02 · 1017 阅读 · 0 评论 -
学习Kalibr工具--Camera标定过程
这里介绍用kalibr工具对相机进行单目和双目的标定;在kalibr中不仅提供了IMU与camera的联合标定工具,也包含了camera的标定工具箱;- 准备:安装好kalibr之后,开始准备标定板,在kalibr中适用于三种标定板,分别是:Aprilgrid,Checkerboard和Circlegrid。其中checkboard最常用,但是aprilgird精度最好,因为它可以提供...原创 2019-01-09 22:05:35 · 16092 阅读 · 21 评论 -
相机标定基础原理详解(张氏标定)
浏览微信公众号看见这篇文章,写的很好,特转载下来,方便其他同学学习,也方便以后复习!微信公众号名字:计算机视觉life 【WHO:张氏标定法发明人】先来简单介绍一下我们的主角:张正友博士。他是世界著名的计算机视觉和多媒体技术的专家,ACM Fellow,IEEE Fellow。现任微软研究院视觉技术组高级研究员。他在立体视觉、三维重建、运动分转载 2018-02-04 20:41:26 · 22609 阅读 · 13 评论 -
VR/ AR/ MR/ CR/ XR/ AV的区别及简介
VR Virtual Reality,虚拟现实,算是这块地头的老大哥了,长兄如父,之后的相关概念,也大都是基于VR衍生出来的。官方一点的说法是,VR技术是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的、三维动态视景和实体行为的系统仿真,该系统仿真可以使用户沉浸到设定的虚拟环境中。这么一大段,其实有用的也就一个词——体原创 2017-07-12 16:28:45 · 17699 阅读 · 0 评论 -
相关滤波跟踪(MOSSE)
转自:http://blog.csdn.net/autocyz/article/details/48136473 在信号处理中,有这么一个概念——相关性(correlation),用来描述两个因素之间的联系。而相关性又分为cross-correlation(互相关,两个信号之间的联系)和auto-correlation(自相关,本身在不同频域的相关性)。2010年CVPR,Davi转载 2017-11-14 09:17:04 · 698 阅读 · 0 评论 -
计算机视觉行业博客和代码汇总
每个做过或者正在做研究工作的人都会关注一些自己认为有价值的、活跃的研究组和个人的主页,关注他们的主页有时候比盲目的去搜索一些论文有用多了,大牛的或者活跃的研究者主页往往提供了他们的最新研究线索,顺便还可八一下各位大牛的经历,对于我这样的小菜鸟来说最最实惠的是有时可以找到源码,很多时候光看论文是理不清思路的。1 牛人Homepages(随意排序,不分先后):1.USC Computer Vision Group:南加大,多目标跟踪/检测等;2.ETHZ Computer Vision Labora转载 2017-06-27 18:21:15 · 1347 阅读 · 0 评论 -
关于统计变换(CT/MCT/RMCT)算法的学习和实现
原文地址http://blog.sina.com.cn/s/blog_684c8d630100turx.html刚开会每周的例会,最讨厌开会了,不过为了能顺利毕业,只能忍了。闲话不多说了,下面把上周学习的一个简单的算法总结一下,以备后面写毕业论文的时候可以参考一下。一、Census Transform(CT)算法的学习 Census Transform 算法是Rami转载 2017-07-21 16:37:49 · 1262 阅读 · 0 评论 -
图像滤波---双边滤波和引导滤波的基本原理
为了等快遗忘时候再复习一遍,感谢大神总结:http://blog.csdn.net/pi9nc/article/details/26592377双边滤波 双边滤波很有名,使用广泛,简单的说就是一种同时考虑了像素空间差异与强度差异的滤波器,因此具有保持图像边缘的特性。先看看我们熟悉的高斯滤波器 其中W是权重,i和j是像素索引,K是归一化常量。原创 2017-07-19 09:35:28 · 2361 阅读 · 0 评论 -
图像滤波---双边滤波和导向滤波的推导与实践
为了等快要遗忘时候再复习一遍!感谢大神总结:http://blog.csdn.net/pi9nc/article/details/26592377上一篇文章已经说了引导滤波的基本理论,而且我们也知道引导滤波可以写出时间复杂度与窗口大小无关的算法,现在就来使用C++并借助OpenCV实现这一算法。 实现这种算法的关键思想是盒式滤波(box filter),而且必须是通过积分图来实现原创 2017-07-19 09:41:25 · 2957 阅读 · 1 评论 -
ORB特征原理
假如有2张图片,我们需要确认这2张图片中是否是同一个人;相对于人眼视觉系统来说这太简单了,只需轻轻扫过2张图片就可以得出结论。但是,如果想让计算机来完成这个功能就困难重重了,再清楚分图像在计算机眼中也只是0-1组成的数据而已。一种可行的方法是找出2张图片中的特征点,描述这些特征点的属性,然后比较这2副图片的特征点的属性。如果有足够多的特征点具有相同的属性,那么就可以认为2副图片中的物体是否是同一个转载 2017-10-05 11:02:58 · 604 阅读 · 0 评论 -
计算机视觉识别简史:从 AlexNet、ResNet 到 Mask RCNN
转自:http://www.dataguru.cn/article-11219-1.html最近,物体识别已经成为计算机视觉和 AI 最令人激动的领域之一。即时地识别出场景中所有的物体的能力似乎已经不再是秘密。随着卷积神经网络架构的发展,以及大型训练数据集和高级计算技术的支持,计算机现在可以在某些特定设置(例如人脸识别)的任务中超越人类的识别能力转载 2017-11-07 16:38:19 · 470 阅读 · 0 评论 -
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
http://www.cnblogs.com/skyfsm/p/6806246.html(没看一遍都会有新的收获,感谢大神们的总结,愿大神们更大神)object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围转载 2017-11-07 17:55:21 · 281 阅读 · 0 评论 -
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文笔记
http://blog.csdn.net/bailufeiyan/article/details/50575150(感谢大神们)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks这篇文章讲述了 Faster R-CNN,介绍了 RPN、Translation-Invar转载 2017-11-07 18:09:29 · 297 阅读 · 0 评论 -
MATLAB下跑Faster-RCNN+ZF实验时如何编译自己需要的external文件
转自:http://blog.csdn.net/qq_32224767/article/details/69945733本篇文章主讲这篇博客中的(http://blog.csdn.net/sinat_30071459/article/details/50546891)的这个部分,如图所示 注:截图来自 小咸鱼_ 的博客。也就是说本文重点教你如何去编转载 2017-11-08 20:39:43 · 508 阅读 · 2 评论 -
KITTI与Cityscapes简介
KITTI由德国卡尔斯鲁厄理工学院和丰田美国技术研究院联合创办,是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集。用于评测目标(机动车、非机动车、行人等)检测、目标跟踪、路面分割等计算机视觉技术在车载环境下的性能。 KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中多达15辆车和30个行人,还有各种程度的遮挡。KITTI数据集中,目标检测包括了车辆检测、行原创 2017-10-17 09:36:25 · 8345 阅读 · 0 评论 -
目标检测中KITTI数据集的简介与使用
http://blog.csdn.net/solomon1558/article/details/70173223 感谢Solomon1588博主的总结,为了便于以后复习,特意转载!摘要:本文融合了Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite和Vision meets Robotics:转载 2017-10-17 12:16:35 · 14402 阅读 · 0 评论 -
立体匹配---立体匹配过程
立体匹配就4个步骤:匹配代价计算,代价聚合,计算视差,视差精化。代价计算:常用的就是基于像素点匹配代价计算,一般有AD, SD,TAD什么的,基于区域的匹配代价计算一般有SAD,SSD, STAD之类的。匹配代价计算会生成一个disparity space image,也就是DSI。这个DSI是一个三维的空间,也就是每一个视差,得到一张代价图。假如视差范围是0~16,则会得到17幅代价图。原创 2017-05-31 21:00:08 · 15730 阅读 · 9 评论