双目视觉
文章平均质量分 68
hairuiJY
在不归路上愈走愈远!
展开
-
双目视觉测距离(三维重建)
看到好的东西就想转载和大家一起分享一起学习!!!来源:http://blog.csdn.net/tiemaxiaosu/article/details/51734667一、三维重建概述 三维重建主要是研究如何从得到的匹配点中计算出相机的投影矩阵(如果是外部标定的话,就是求出相机的外部参数)以及如何计算出匹配点的三维坐标。 目前研究的进展与之还相差较远。研转载 2017-03-02 20:14:38 · 10111 阅读 · 2 评论 -
图像滤波---双边滤波和导向滤波的推导与实践
为了等快要遗忘时候再复习一遍!感谢大神总结:http://blog.csdn.net/pi9nc/article/details/26592377上一篇文章已经说了引导滤波的基本理论,而且我们也知道引导滤波可以写出时间复杂度与窗口大小无关的算法,现在就来使用C++并借助OpenCV实现这一算法。 实现这种算法的关键思想是盒式滤波(box filter),而且必须是通过积分图来实现原创 2017-07-19 09:41:25 · 2957 阅读 · 1 评论 -
立体匹配---左右一致性检测/遮挡区填充
左右一致性检测(Left-Right Consistency(LRC) check): 左右检测对实验效果的提升是很显著的,无论是视差图的视觉效果还是数据精度。很多时候LRC都是论文的遮羞布,在论文主体部分优势不明显的情况下,通过LRC依然能得到过得去的结果,从而掩盖了核心算法的孱弱。是的,一些不错的会议文章也是这么干的。这就是论文写作的小trick吧,也是一种潜规则了。 [Occ原创 2017-07-19 14:10:19 · 14186 阅读 · 10 评论 -
相机标定基础原理详解(张氏标定)
浏览微信公众号看见这篇文章,写的很好,特转载下来,方便其他同学学习,也方便以后复习!微信公众号名字:计算机视觉life 【WHO:张氏标定法发明人】先来简单介绍一下我们的主角:张正友博士。他是世界著名的计算机视觉和多媒体技术的专家,ACM Fellow,IEEE Fellow。现任微软研究院视觉技术组高级研究员。他在立体视觉、三维重建、运动分转载 2018-02-04 20:41:26 · 22609 阅读 · 13 评论 -
calibrateCamera() 原理
Camera CalibrationThe functions in this section use a so-called pinhole camera model. In this model, a scene view is formed by projecting 3D points into the image plane using a perspective transformat...转载 2018-03-04 01:31:22 · 10985 阅读 · 5 评论 -
RANSAC与LSP
Ransac和最小二乘法都用于模型的最优估计;RANSAC是考虑局部有用的那些数据,取有用数据的模型;LSP考虑的是全局数据,取全局误差最小的模型原创 2018-06-24 17:30:37 · 454 阅读 · 0 评论 -
Flann特征点匹配简述(Lowe's algorithm)
/***好记性不如烂笔头,记下来便于以后复习***/ 特征匹配的结果会得到两个特征集合的对应关系列表。第一组特征集被称为训练集(train),第二组被称为查询集(query)。Flann 在调用匹配函数之前,为了提高匹配速度,训练一个匹配器。训练阶段是为了优化cv::FlannBasedMatcher的性能。train类将会建立特征集的索引树。将 query image...原创 2018-10-04 18:34:00 · 16674 阅读 · 2 评论 -
Opencv中的仿射变换和透射变换
OpenCV提供了一些关于透视变换的接口,例如getPerpectiveTransform, warpPerspective等。这里主要说明一下warpPerspective是如何工作的。 其实OpenCV中很多图像变换的映射关系都是反直觉的,如这里的warpPerspective和remap函数。直觉告诉我们,这些函数的输入是原图的像素坐标,通过映射表或矩阵运算,输出的是目标图像的像素坐标。...原创 2018-10-04 19:16:23 · 2875 阅读 · 0 评论 -
双目立体图像矫正方法简述
/**好记性不如烂笔头,将自己之前做的一些工作做一个简单总结**/在立体视觉中只有当两个相机成像平面完全平行且行对准时,在立体匹配计算立体视差过程中是最简单的,为了使相机两成像平面完全平行且行对准,OpenCV提供了非标定和标定的方法来计算左右相机的校正矩阵。一、非标定方法:非标定方法也称为(Hartley)方法,有时候我们不知道相机的内参矩阵,而且也不用知道内参数具体是多少,因为我们...原创 2019-01-14 22:21:18 · 5256 阅读 · 1 评论 -
相机标定简述
相机标定有很多中方法!在这里将常用的方法进行简单总结!单目标定:就是简单的单个相机标定,目的是求出相机的 内参与外参数;常用的标定方法有 张正友标定法(张氏标定法),自标定法,Kalibr标定工具,MATLAB标定工具包;双目标定:单目标定+两个相机之间的转换关系(R与T);常用的方法 Opencv中的Stereo标定API接口,Mtlab中的 标定工具箱;Kalibr标定工具;Camera+IM...原创 2019-01-09 16:58:19 · 961 阅读 · 0 评论 -
图像滤波---双边滤波和引导滤波的基本原理
为了等快遗忘时候再复习一遍,感谢大神总结:http://blog.csdn.net/pi9nc/article/details/26592377双边滤波 双边滤波很有名,使用广泛,简单的说就是一种同时考虑了像素空间差异与强度差异的滤波器,因此具有保持图像边缘的特性。先看看我们熟悉的高斯滤波器 其中W是权重,i和j是像素索引,K是归一化常量。原创 2017-07-19 09:35:28 · 2361 阅读 · 0 评论 -
关于统计变换(CT/MCT/RMCT)算法的学习和实现
原文地址http://blog.sina.com.cn/s/blog_684c8d630100turx.html刚开会每周的例会,最讨厌开会了,不过为了能顺利毕业,只能忍了。闲话不多说了,下面把上周学习的一个简单的算法总结一下,以备后面写毕业论文的时候可以参考一下。一、Census Transform(CT)算法的学习 Census Transform 算法是Rami转载 2017-07-21 16:37:49 · 1262 阅读 · 0 评论 -
立体匹配---TAD算法
TAD算法用于立体匹配中的匹配待机的计算过程中,以下是对其进行的解释: 以上是TAD算法的相似度度量函数,该函数在自适应权重中也有应用。等号右边,绝对值内部的表示r g b三个通道的像素值差,求绝对值之后再求和,然后和截断阈值T进行比较,最后得出的结果是-差的绝对值的和与截断阈值T之间小的那个!原创 2017-06-27 15:26:20 · 1940 阅读 · 0 评论 -
双目视觉的标定
本文章转至知乎上一位大牛(陈明猷)的回答,感觉说的很在理,就转到这里和大家分享!!!有不妥之处请见谅!!!链接:https://www.zhihu.com/question/29448299/answer/102658379来源:知乎1.为什么要用多张标定板图片做标定?具体数学实现题主可以自行找文献,这里只说原理。单目标定说白了其实就是解一个矩阵方程,其未知量是内、外参转载 2017-02-25 10:06:37 · 3797 阅读 · 0 评论 -
双目视觉
作者:陈明猷链接:https://www.zhihu.com/question/54106600/answer/138484840来源:知乎双目标定后的下一件事是外极线校准,通俗地讲就是让同一个实际点在左右图像中的投影点处于一条水平线上,这是为了后面立体匹配的时候只需要在同一行上搜索匹配点,降低匹配的复杂度。完成这个过程需要用到几乎所有的标定参数(包括结构参数R和T)。然后是立转载 2017-02-25 19:44:31 · 1429 阅读 · 0 评论 -
双目视觉---opencv中立体匹配相关代码
因为怕忘记,所以就转过来了!(原文:http://www.cnblogs.com/polly333/p/5130375.html)三种匹配算法比较BM算法:该算法代码:view plaincopy to clipboardprint?CvStereoBMState *BMState = cvCreateStereoBMState(); int SADWin转载 2017-05-17 20:10:40 · 4955 阅读 · 0 评论 -
双目视觉---立体匹配介绍
原文:http://blog.csdn.net/mysniper11/article/details/8618245一、概念 立体匹配算法主要是通过建立一个能量代价函数,通过此能量代价函数最小化来估计像素点视差值。立体匹配算法的实质就是一个最优化求解问题,通过建立合理的能量函数,增加一些约束,采用最优化理论的方法进行方程求解,这也是所有的病态问题求解方法。二、转载 2017-05-17 21:19:52 · 3322 阅读 · 0 评论 -
立体匹配---立体匹配算法最新动态
立体匹配算法最新动态:http://vision.middlebury.edu/stereo/eval/http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo原创 2017-06-01 10:58:05 · 2251 阅读 · 0 评论 -
双目视觉---图像匹配基本算法总结
简介: 本文主要介绍几种基于灰度的图像匹配算法:平均绝对差算法(MAD)、绝对误差和算法(SAD)、误差平方和算法(SSD)、平均误差平方和算法(MSD)、归一化积相关算法(NCC)、序贯相似性检测算法(SSDA)、hadamard变换算法(SATD)。下面依次对其进行讲解。MAD算法 介绍:平均绝对差算法(Mean Absolute Diff转载 2017-05-21 11:36:17 · 15423 阅读 · 1 评论 -
立体匹配---Census Transform
原文:http://www.cnblogs.com/aslmer/p/6369936.html1、立体匹配算法主要可分为两大类:基于局部约束和基于全局约束的立体匹配算法.(一)基于全局约束的立体匹配算法:在本质上属于优化算法,它是将立体匹配问题转化为寻找全局能量函数的最优化问题,其代表算法主要有图割算法、置信度传播算法和协同优化算法等.全局算法能够获得较低的总误匹配率,但算法复杂度转载 2017-05-22 09:11:04 · 2721 阅读 · 0 评论 -
立体匹配---动态规划
原文:http://blog.csdn.net/chuhang_zhqr/article/details/52586793近来研究立体匹配,从入门开始,先学习一些基本的算法思想。 立体匹配算法中,全局匹配是一个很重要的部分,利用图像的全局约束信息,对局部图像的模糊不敏感,它的计算代价很高。全局匹配算法通过构建全局能量函数,然后通过优化方法最小化全局能量函数以求得致密视差图。转载 2017-05-22 10:58:18 · 4318 阅读 · 0 评论 -
立体匹配---立体匹配过程
立体匹配就4个步骤:匹配代价计算,代价聚合,计算视差,视差精化。代价计算:常用的就是基于像素点匹配代价计算,一般有AD, SD,TAD什么的,基于区域的匹配代价计算一般有SAD,SSD, STAD之类的。匹配代价计算会生成一个disparity space image,也就是DSI。这个DSI是一个三维的空间,也就是每一个视差,得到一张代价图。假如视差范围是0~16,则会得到17幅代价图。原创 2017-05-31 21:00:08 · 15730 阅读 · 9 评论 -
学习Kalibr工具--Camera标定过程
这里介绍用kalibr工具对相机进行单目和双目的标定;在kalibr中不仅提供了IMU与camera的联合标定工具,也包含了camera的标定工具箱;- 准备:安装好kalibr之后,开始准备标定板,在kalibr中适用于三种标定板,分别是:Aprilgrid,Checkerboard和Circlegrid。其中checkboard最常用,但是aprilgird精度最好,因为它可以提供...原创 2019-01-09 22:05:35 · 16092 阅读 · 21 评论