双目立体视觉逐步实现
该专栏计划将之前做的双目立体视觉的相关内容做个总结;
主要分为如下:
双目立体视觉基本理论知识介绍
双目标定及矫正(数据采集)
双目视觉立体匹配算法实现
双目立体视觉重建实现
双目使用软件设计
hairuiJY
在不归路上愈走愈远!
展开
-
双目立体图像矫正方法简述
/**好记性不如烂笔头,将自己之前做的一些工作做一个简单总结**/在立体视觉中只有当两个相机成像平面完全平行且行对准时,在立体匹配计算立体视差过程中是最简单的,为了使相机两成像平面完全平行且行对准,OpenCV提供了非标定和标定的方法来计算左右相机的校正矩阵。一、非标定方法:非标定方法也称为(Hartley)方法,有时候我们不知道相机的内参矩阵,而且也不用知道内参数具体是多少,因为我们...原创 2019-01-14 22:21:18 · 5256 阅读 · 1 评论 -
立体匹配---左右一致性检测/遮挡区填充
左右一致性检测(Left-Right Consistency(LRC) check): 左右检测对实验效果的提升是很显著的,无论是视差图的视觉效果还是数据精度。很多时候LRC都是论文的遮羞布,在论文主体部分优势不明显的情况下,通过LRC依然能得到过得去的结果,从而掩盖了核心算法的孱弱。是的,一些不错的会议文章也是这么干的。这就是论文写作的小trick吧,也是一种潜规则了。 [Occ原创 2017-07-19 14:10:19 · 14186 阅读 · 10 评论 -
立体匹配---立体匹配过程
立体匹配就4个步骤:匹配代价计算,代价聚合,计算视差,视差精化。代价计算:常用的就是基于像素点匹配代价计算,一般有AD, SD,TAD什么的,基于区域的匹配代价计算一般有SAD,SSD, STAD之类的。匹配代价计算会生成一个disparity space image,也就是DSI。这个DSI是一个三维的空间,也就是每一个视差,得到一张代价图。假如视差范围是0~16,则会得到17幅代价图。原创 2017-05-31 21:00:08 · 15730 阅读 · 9 评论 -
立体匹配---TAD算法
TAD算法用于立体匹配中的匹配待机的计算过程中,以下是对其进行的解释: 以上是TAD算法的相似度度量函数,该函数在自适应权重中也有应用。等号右边,绝对值内部的表示r g b三个通道的像素值差,求绝对值之后再求和,然后和截断阈值T进行比较,最后得出的结果是-差的绝对值的和与截断阈值T之间小的那个!原创 2017-06-27 15:26:20 · 1940 阅读 · 0 评论 -
立体匹配---立体匹配算法最新动态
立体匹配算法最新动态:http://vision.middlebury.edu/stereo/eval/http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo原创 2017-06-01 10:58:05 · 2251 阅读 · 0 评论 -
立体匹配---动态规划
原文:http://blog.csdn.net/chuhang_zhqr/article/details/52586793近来研究立体匹配,从入门开始,先学习一些基本的算法思想。 立体匹配算法中,全局匹配是一个很重要的部分,利用图像的全局约束信息,对局部图像的模糊不敏感,它的计算代价很高。全局匹配算法通过构建全局能量函数,然后通过优化方法最小化全局能量函数以求得致密视差图。转载 2017-05-22 10:58:18 · 4318 阅读 · 0 评论 -
立体匹配---Census Transform
原文:http://www.cnblogs.com/aslmer/p/6369936.html1、立体匹配算法主要可分为两大类:基于局部约束和基于全局约束的立体匹配算法.(一)基于全局约束的立体匹配算法:在本质上属于优化算法,它是将立体匹配问题转化为寻找全局能量函数的最优化问题,其代表算法主要有图割算法、置信度传播算法和协同优化算法等.全局算法能够获得较低的总误匹配率,但算法复杂度转载 2017-05-22 09:11:04 · 2721 阅读 · 0 评论 -
双目视觉---图像匹配基本算法总结
简介: 本文主要介绍几种基于灰度的图像匹配算法:平均绝对差算法(MAD)、绝对误差和算法(SAD)、误差平方和算法(SSD)、平均误差平方和算法(MSD)、归一化积相关算法(NCC)、序贯相似性检测算法(SSDA)、hadamard变换算法(SATD)。下面依次对其进行讲解。MAD算法 介绍:平均绝对差算法(Mean Absolute Diff转载 2017-05-21 11:36:17 · 15423 阅读 · 1 评论 -
双目视觉---立体匹配介绍
原文:http://blog.csdn.net/mysniper11/article/details/8618245一、概念 立体匹配算法主要是通过建立一个能量代价函数,通过此能量代价函数最小化来估计像素点视差值。立体匹配算法的实质就是一个最优化求解问题,通过建立合理的能量函数,增加一些约束,采用最优化理论的方法进行方程求解,这也是所有的病态问题求解方法。二、转载 2017-05-17 21:19:52 · 3322 阅读 · 0 评论 -
双目视觉---opencv中立体匹配相关代码
因为怕忘记,所以就转过来了!(原文:http://www.cnblogs.com/polly333/p/5130375.html)三种匹配算法比较BM算法:该算法代码:view plaincopy to clipboardprint?CvStereoBMState *BMState = cvCreateStereoBMState(); int SADWin转载 2017-05-17 20:10:40 · 4955 阅读 · 0 评论 -
双目视觉的标定
本文章转至知乎上一位大牛(陈明猷)的回答,感觉说的很在理,就转到这里和大家分享!!!有不妥之处请见谅!!!链接:https://www.zhihu.com/question/29448299/answer/102658379来源:知乎1.为什么要用多张标定板图片做标定?具体数学实现题主可以自行找文献,这里只说原理。单目标定说白了其实就是解一个矩阵方程,其未知量是内、外参转载 2017-02-25 10:06:37 · 3797 阅读 · 0 评论 -
双目视觉测距离(三维重建)
看到好的东西就想转载和大家一起分享一起学习!!!来源:http://blog.csdn.net/tiemaxiaosu/article/details/51734667一、三维重建概述 三维重建主要是研究如何从得到的匹配点中计算出相机的投影矩阵(如果是外部标定的话,就是求出相机的外部参数)以及如何计算出匹配点的三维坐标。 目前研究的进展与之还相差较远。研转载 2017-03-02 20:14:38 · 10111 阅读 · 2 评论 -
双目视觉
作者:陈明猷链接:https://www.zhihu.com/question/54106600/answer/138484840来源:知乎双目标定后的下一件事是外极线校准,通俗地讲就是让同一个实际点在左右图像中的投影点处于一条水平线上,这是为了后面立体匹配的时候只需要在同一行上搜索匹配点,降低匹配的复杂度。完成这个过程需要用到几乎所有的标定参数(包括结构参数R和T)。然后是立转载 2017-02-25 19:44:31 · 1429 阅读 · 0 评论