生物信息小知识_1_reads.contigs.scaffolds...

生物信息小知识_1_reads.contigs.scaffolds...

 
read :(专业:)高通量测序时,在芯片上的每个反应都会读出相应的一条序列,是比较短的,叫read。
(理解:)reads是原始的数据;raw_reads是测出来的未被clean的reads;raw_reads(raw_data)经过clean之后就变成了clean_reads(clean_data)。
contig:(专业:)很多的reads通过重叠片段(overlap),能够组装成一个更大的片段,这个更大的片段就是contig。
(理解:)通过软件/或其他工具,把有overlap的reads整合到一起,形成的较长序列,就得到了(有 overlap的readsÿ
### 微生物高通量测序数据处理方法和工具 #### 数据预处理 在进行任何深入的数据分析之前,原始测序文件通常需要经过一系列预处理步骤来提高后续分析的质量。这包括去除低质量碱基、适配器污染和其他可能影响结果的因素。 对于微生物群落的研究来说,过滤掉宿主DNA是非常重要的一步。可以采用专门设计的人类或其他宿主物种的参考数据库来进行比对筛选[^1]。常用的软件工具有Trimmomatic, Fastp等用于清理FASTQ格式的reads;Bowtie2 或者 BWA 可以用来映射到宿主基因组上从而排除这些非目标序列[^4]。 ```bash trimmomatic PE -threads 8 \ input_R1.fastq.gz input_R2.fastq.gz \ output_forward_paired.fq output_forward_unpaired.fq \ output_reverse_paired.fq output_reverse_unpaired.fq \ ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 ``` #### 序列组装与分类鉴定 由于单次读取长度有限,在某些情况下还需要将多个重叠的小片段重新组合成更完整的contigs甚至scaffolds。MetaSPAdes 是一种广泛使用的宏基因组de novo 组装工具,它能够有效地处理来自不同环境样品中的复杂混合物。 一旦获得了高质量的装配体之后,则可以通过BLASTN/SWAPR 对其功能特性做出初步预测,并借助于Greengenes, SILVA rRNA Database Collection 和 NCBI nt/nr库实现精确至属级乃至种级别的分类学归属判断[^2]。 ```python from Bio.Blast import NCBIWWW result_handle = NCBIWWW.qblast("blastn", "nt", sequence) with open("output.xml", "w") as out_handle: out_handle.write(result_handle.read()) ``` #### 功能注释及差异丰度分析 为了理解各个操作分类单元(OTUs)所代表的具体生物学意义,往往还需进一步挖掘它们潜在的功能角色。KEGG Orthology (KO), COG/NOG clusters of orthologous groups 提供了一个很好的平台去探索未知世界里蕴藏的秘密[^3]. 当涉及到比较两组或多组样本之间的区别时,DESeq2, edgeR 这样的包可以帮助识别显著变化的趋势并评估统计学上的重要性水平。此外,lefse 工具还可以直观展示出哪些特征最能区分不同的实验条件或疾病状态。 ```r library(DESeq2) dds <- DESeqDataSetFromMatrix(countData = counts, colData = metadata, design= ~ condition) dds <- DESeq(dds) res <- results(dds) write.csv(as.data.frame(res), file="deseq_results.csv") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangchuang2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值