概述
欢迎访问 持续更新:https://cgabc.xyz/posts/6a2809e2/
SLAM,即 同时定位与建图,视觉SLAM的 定位 即 求取相机位姿(旋转和平移 [ R t ] [\mathbf{R} \quad \mathbf{t}] [Rt]);在SLAM中,我们一般使用 李代数 ξ \boldsymbol{\xi} ξ 来表示 旋转和平移。

- 记 相机内参矩阵 K \mathbf{K} K,相机位姿 T = [ R t ] \mathbf{T} = [\mathbf{R} \quad \mathbf{t}] T=[Rt] (or ξ \boldsymbol{\xi} ξ)
- 记 I 1 I_1 I1 的图像坐标系下,一像素点 p ( u , v ) \mathbf{p}(u,v) p(u,v);在 O 1 O_1 O1 相机坐标系下,其对应的 三维点 P ( X , Y , Z ) \mathbf{P}(X,Y,Z) P(X,Y,Z)
- 记 I 2 I_2 I2 的图像坐标系下,一像素点 p ′ ( u ′ , v ′ ) \mathbf{p'}(u',v') p′(u′,v′);在 O 2 O_2 O2 相机坐标系下,其对应的 三维点 P ′ ( X ′ , Y ′ , Z ′ ) \mathbf{P'}(X',Y',Z') P′(X′,Y′,Z′),归一化坐标为 p ′ n o r m \mathbf{p'}_{norm} p′norm
P ′ = R ⋅ P + t \mathbf{P'} = \mathbf{R} \cdot \mathbf{P} + \mathbf{t} P′=R⋅P+t
p ′ ~ n o r m = ( X ′ n o r m , Y ′ n o r m , 1 ) = P ′ Z ′ = ( X ′ Z ′ , Y ′ Z ′ , 1 ) \tilde{\mathbf{p'}}_{norm} = ({X'}_{norm},{Y'}_{norm},1) = \frac{\mathbf{P'}}{Z'} = (\frac{X'}{Z'}, \frac{Y'}{Z'}, 1) p′~norm=(X′norm,Y′norm,1)=Z′P′=(Z′X′,Z′Y′,1)
p ′ ~ = K ⋅ p ′ ~ n o r m \tilde{\mathbf{p'}} = \mathbf{K} \cdot \tilde{\mathbf{p'}}_{norm} p′~=K⋅p′~norm
在 优化位姿 时,其思想是构造一个关于位姿变化的误差函数,当这个误差函数最小时,认为此时估计的位姿最优。视觉SLAM主要分为 直接法 和 特征点法,但无论是直接法还是特征点法,位姿的迭代优化都是求解一个 最小二乘问题。
min ξ 1 2 ∥ r ( ξ ) ∥ 2 \min_{\boldsymbol{\xi}} \frac{1}{2} \left\| r(\boldsymbol{\xi}) \right\|^2 ξmin21∥r(ξ)∥2
- 直接法 最小化 光度误差,即 前后帧像素的灰度误差
r ( ξ ) = I 2 ( p ′ ) − I 1 ( p ) = I 2 ( u ′ , v ′ ) − I 1 ( u , v ) \begin{aligned} r(\boldsymbol{\xi}) &= \mathbf{I}_2(\mathbf{p}') - \mathbf{I}_1(\mathbf{p}) \\ &= \mathbf{I}_2(u',v') - \mathbf{I}_1(u,v) \end{aligned} r(ξ)=I2(p′)−I1(p)=I2(u′,v′)−I1(u,v)
- 特征点法 最小化 重投影误差,即地图点到当前图像投影点与匹配点的坐标误差
r ( ξ ) = p ′ − p = ( u ′ , v ′ ) − ( u , v ) \begin{aligned} r(\boldsymbol{\xi}) &= \mathbf{p}' - \mathbf{p} \\ &= (u',v') - (u,v) \end{aligned} r(ξ)=p′−p=(u′,v′)−(u,v)
误差函数对于位姿的 雅可比矩阵(Jacobian Matrix),决定着下一步最优迭代估计时 位姿增量的方向。
J ( ξ ) = ∂ r ( ξ ) ∂ ξ \mathbf{J}(\boldsymbol{\xi}) = \frac{\partial{r(\boldsymbol{\xi})}}{\partial \boldsymbol{\xi}} J(ξ)=∂ξ∂r(ξ)
根据上面位姿变换的流程,我们可以用 链式法则 来表示 J \mathbf{J} J
J ( ξ ) = ∂ r ( ξ ) ∂ ξ = ∂ r ( ξ ) ∂ p ′ ⋅ ∂ p ′ ∂ p n o r m ′ ⋅ ∂ p n o r m ′ ∂ P ′ ⋅ ∂ P ′ ∂ ξ = J 0 ⋅ J 1 ⋅ J 2 ⋅ J 3 \begin{aligned} \mathbf{J}(\boldsymbol{\xi}) &= \frac{\partial{r(\boldsymbol{\xi})}}{\partial \boldsymbol{\xi}} \\ &= \frac{\partial{r(\boldsymbol{\xi})}}{\partial \mathbf{p}'} \cdot \frac{\partial \mathbf{p}'}{\partial \mathbf{p}_{norm}'} \cdot \frac{\partial \mathbf{p}_{norm}'}{\partial \mathbf{P'}} \cdot \frac{\partial \mathbf{P'}}{\partial \boldsymbol{\xi}} \\ &= \mathbf{J}_0 \cdot \mathbf{J}_1 \cdot \mathbf{J}_2 \cdot \mathbf{J}_3 \end{aligned} J(ξ)=∂ξ∂r(ξ)=∂p′∂r(ξ)⋅∂pnorm′∂p′⋅∂P′∂pnorm′⋅∂ξ∂P′=J0⋅J1⋅J2⋅J3
由此,直接法 与 特征点法 雅克比矩阵 只区别于 J 0 \mathbf{J}_0 J0。
本文主要介绍 SLAM优化位姿时误差函数对位姿雅可比矩阵的推导。
雅克比矩阵 推导
Jacobian 0
J 0 = ∂ r ( ξ ) ∂ p ′ \mathbf{J}_0 = \frac{\partial{r(\boldsymbol{\xi})}}{\partial \mathbf{p}'} J0=∂p′∂r(ξ)
直接法
我们已知, 在直接法中,单像素点的误差函数是关于像素值的函数,即 光度误差
r ( ξ ) = I 2 ( u ′ , v ′ ) − I 1 ( u , v ) r(\boldsymbol{\xi}) = \mathbf{I}_2(u',v') - \mathbf{I}_1(u,v) r(ξ)=I2(u′,v′)−I1(u,v)
由于对于一个特定的像素点, I 1 ( p ) \mathbf{I}_1(\mathbf{p}) I1(p) 是关于 ξ \boldsymbol{\xi} ξ 的常量,所以
J 0 = ∂ I 2 ( p ′ ) ∂ p ′ = [ I 2 ( u ′ + 1 , v ′ ) − I 2 ( u ′ − 1 , v ′ ) 2 , I 2 ( u ′ , v ′ + 1 ) − I 2 ( u ′ , v ′ − 1 ) 2 ] \begin{aligned} \mathbf{J}_0 &= \frac{\partial \mathbf{I}_2(\mathbf{p}')}{\partial \mathbf{p}'} \\ &= \bigg[ \frac{\mathbf{I}_2(u'+1,v')-\mathbf{I}_2(u'-1,v')}{2}, \frac{\mathbf{I}_2(u',v'+1)-\mathbf{I}_2(u',v'-1)}{2} \bigg] \end{aligned} J0=∂p′∂I2(p′)=[2I2(u′+1,v′)−I2(u′−1,v′),2I2(u′,v′+1)−I2(u′,v′−1)]
为 图像 I 2 \mathbf{I}_2 I2 在 p ′ \mathbf{p}' p′ 点处的 像素梯度
特征点法
我们已知, 在直接法中,单像素点的误差函数是关于像素坐标的函数
r ( ξ ) = p ′ − p r(\boldsymbol{\xi}) = \mathbf{p}' - \mathbf{p} r(ξ)=p′−p
由于对于一个特定的像素点, p \mathbf{p} p 是关于 ξ \boldsymbol{\xi} ξ 的常量,所以
J 0 = ∂ p ′ ∂ p ′ = I ∈ R 2 × 2 \mathbf{J}_0 = \frac{\partial \mathbf{p}'}{\partial \mathbf{p}'} = \mathbf{I} \in \mathbb{R}^{2 \times 2} J0=∂p′∂p′=I∈R2×2
Jacobian 1
J 1 = ∂ p ′ ∂ p n o r m ′ = ∂ ( u , v ) ∂ ( X n o r m ′ , Y n o r m ′ ) \mathbf{J}_1 = \frac{\partial \mathbf{p}'}{\partial \mathbf{p}_{norm}'} = \frac{\partial (u,v)}{\partial (X_{norm}',Y_{norm}')} J1=∂pnorm′∂p′=∂(Xnorm′,Ynorm′)∂(u,v)
由于
p ′ ~ = K ⋅ p ′ ~ n o r m \tilde{\mathbf{p'}} = \mathbf{K} \cdot \tilde{\mathbf{p'}}_{norm} p′~=K⋅p′~norm
J 1 \mathbf{J}_1 J1 的计算跟 相机投影模型 有关,本文以 针孔相机模型 (不考虑畸变)为例 对其进行计算。
针孔相机模型(不考虑畸变) 的 数学模型 为
K = [ f x 0 c x 0 f y c y 0 0 1 ] \mathbf{K} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} K=⎣ ⎡fx000fy0cxcy1⎦ ⎤
所以
J 1 = [ f x 0 0 f y ] ∈ R 2 × 2 \mathbf{J}_1 = \begin{bmatrix} f_x & 0 \\ 0 & f_y \end{bmatrix} \in \mathbb{R}^{2 \times 2} J1=[fx00fy]∈R2×2
Jacobian 2
J 2 = ∂ p n o r m ′ ∂ P ′ = ∂ ( X n o r m ′ , Y n o r m ′ ) ∂ ( X ′ , Y ′ , Z ′ ) \begin{aligned} \mathbf{J}_2 &= \frac{\partial \mathbf{p}_{norm}'}{\partial \mathbf{P'}} \\ &= \frac{\partial (X_{norm}',Y_{norm}')}{\partial (X',Y',Z')} \end{aligned} J2=∂P′∂pnorm′=∂(X′,Y′,Z′)∂(Xnorm′,Ynorm′)
根据
p ′ ~ n o r m = P ′ Z ′ \tilde{\mathbf{p'}}_{norm} = \frac {\mathbf{P'}} {Z'} p′~norm=Z′P′
计算得
J 2 = [ 1 Z ′ 0 − X ′ Z ′ 2 0 1 Z ′ − Y ′ Z ′ 2 ] = [ 1 0 − X ′ Z ′ 0 1 − Y ′ Z ′ ] ⋅ 1 Z ′ ∈ R 2 × 3 \begin{aligned} \mathbf{J}_2 &= \begin{bmatrix} \frac{1}{Z'} & 0 & -\frac{X'}{Z'^2} \\ 0 & \frac{1}{Z'} & -\frac{Y'}{Z'^2} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & -\frac{X'}{Z'} \\ 0 & 1 & -\frac{Y'}{Z'} \end{bmatrix} \cdot \frac{1}{Z'} \in \mathbb{R}^{2 \times 3} \end{aligned} J2=[Z′100Z′1−Z′2X′−Z′2Y′]=[1001−Z′X′−Z′Y′]⋅Z′1∈R2×3
Jacobian 3
J 3 = ∂ P ′ ∂ ξ = ∂ ( T ⋅ P ) ∂ ξ = ∂ ( exp ( ξ ∧ ) P ) ∂ ξ \begin{aligned} \mathbf{J}_3 &= \frac{\partial \mathbf{P'}}{\partial \boldsymbol{\xi}} \\ &= \frac{\partial (\mathbf{T} \cdot \mathbf{P})}{\partial \boldsymbol{\xi}} \\ &= \frac{\partial ( \exp(\boldsymbol{\xi}^{\wedge}) \mathbf{P}) }{\partial \boldsymbol{\xi}} \end{aligned} J3=∂ξ∂P′=∂ξ∂(T⋅P)=∂ξ∂(exp(ξ∧)P)
其中
ξ = [ ρ ϕ ] ∈ R 6 \boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\phi} \end{bmatrix} \in \mathbb{R}^6 ξ=[ρϕ]∈R6
类似高数中,求取 f ( x ) f(x) f(x) 的导数
d f d x = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x \frac{df}{dx} = \lim_{\Delta x \rightarrow 0} \frac{f(x+\Delta x) - f(x)}{\Delta x} dxdf=Δx→0limΔxf(x+Δx)−f(x)
我们可以 根据李代数加法来对李代数进行求导,计算雅克比矩阵。
一般更使用的,利用李群来左乘或者右乘微小扰动,在对这个扰动的李代数进行求导,利用 扰动模型 δ ξ = [ δ ρ δ ϕ ] \delta \boldsymbol{\xi} = [\delta \boldsymbol{\rho} \quad \delta \boldsymbol{\phi}] δξ=[δρδϕ],计算如下
∂ P ′ ~ ∂ ξ = ∂ ( T ⋅ P ~ ) ∂ ξ = ∂ ( exp ( ξ ∧ ) P ~ ) ∂ δ ξ (左扰动模型) = lim δ ξ → 0 exp ( δ ξ ∧ ) exp ( ξ ∧ ) P ~ − exp ( ξ ∧ ) P ~ δ ξ ≈ lim δ ξ → 0 ( I + δ ξ ∧ ) exp ( ξ ∧ ) P ~ − exp ( ξ ∧ ) P ~ δ ξ = lim δ ξ → 0 δ ξ ∧ exp ( ξ ∧ ) P ~ δ ξ = lim δ ξ → 0 [ δ ϕ ∧ δ ρ 0 T 0 ] [ R ⋅ P + t 1 ] δ ξ = lim δ ξ → 0 [ δ ϕ ∧ ( R ⋅ P + t ) + δ ρ 0 ] δ ξ = [ I − ( R ⋅ P + t ) ∧ 0 T 0 T ] = [ I − P ′ ∧ 0 T 0 T ] \begin{aligned} \frac{\partial \tilde{\mathbf{P'}}}{\partial \boldsymbol{\xi}} &= \frac{\partial (\mathbf{T} \cdot \tilde{\mathbf{P}})}{\partial \boldsymbol{\xi}} \\ &= \frac{\partial ( \exp(\boldsymbol{\xi}^{\wedge}) \tilde{\mathbf{P}} ) }{\partial \delta \boldsymbol{\xi}} \quad \text{(左扰动模型)} \\ &= \lim_{\delta \boldsymbol{\xi} \rightarrow 0} \frac { \exp(\delta \boldsymbol{\xi}^{\wedge}) \exp(\boldsymbol{\xi}^{\wedge}) \tilde{\mathbf{P}} - \exp(\boldsymbol{\xi}^{\wedge}) \tilde{\mathbf{P}} } { \delta \boldsymbol{\xi} } \\ &\approx \lim_{\delta \boldsymbol{\xi} \rightarrow 0} \frac { (\mathbf{I}+ \delta \boldsymbol{\xi}^{\wedge}) \exp(\boldsymbol{\xi}^{\wedge}) \tilde{\mathbf{P}} - \exp(\boldsymbol{\xi}^{\wedge}) \tilde{\mathbf{P}} } { \delta \boldsymbol{\xi} } \\ &= \lim_{\delta \boldsymbol{\xi} \rightarrow 0} \frac { \delta \boldsymbol{\xi}^{\wedge} \exp(\boldsymbol{\xi}^{\wedge}) \tilde{\mathbf{P}} } { \delta \boldsymbol{\xi} } \\ &= \lim_{\delta \boldsymbol{\xi} \rightarrow 0} \frac { \begin{bmatrix} \delta \boldsymbol{\phi}^{\wedge} & \delta \boldsymbol{\rho} \\ \mathbf{0}^{T} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} \cdot \mathbf{P} + \mathbf{t} \\ 1 \end{bmatrix} } { \delta \boldsymbol{\xi} } \\ &= \lim_{\delta \boldsymbol{\xi} \rightarrow 0} \frac { \begin{bmatrix} \delta \boldsymbol{\phi}^{\wedge} (\mathbf{R} \cdot \mathbf{P} + \mathbf{t}) + \delta \boldsymbol{\rho} \\ 0 \end{bmatrix} } { \delta \boldsymbol{\xi} } \\ &= \begin{bmatrix} \mathbf{I} & -(\mathbf{R} \cdot \mathbf{P} + \mathbf{t})^{\wedge} \\ \mathbf{0}^{T} & \mathbf{0}^{T} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{I} & -\mathbf{P}'^{\wedge} \\ \mathbf{0}^{T} & \mathbf{0}^{T} \end{bmatrix} \end{aligned} ∂ξ∂P′~=∂ξ∂(T⋅P~)=∂δξ∂(exp(ξ∧)P~)(左扰动模型)=δξ→0limδξexp(δξ∧)exp(ξ∧)P~−exp(ξ∧)P~≈δξ→0limδξ(I+δξ∧)exp(ξ∧)P~−exp(ξ∧)P~=δξ→0limδξδξ∧exp(ξ∧)P~=δξ→0limδξ[δϕ∧0Tδρ0][R⋅P+t1]=δξ→0limδξ[δϕ∧(R⋅P+t)+δρ0]=[I0T−(R⋅P+t)∧0T]=[I0T−P′∧0T]
所以
J 3 = [ I − P ′ ∧ ] = [ 1 0 0 0 Z ′ − Y ′ 0 1 0 − Z ′ 0 X ′ 0 0 1 Y ′ − X ′ 0 ] ∈ R 3 × 6 \begin{aligned} \mathbf{J}_3 &= \begin{bmatrix} \mathbf{I} & -\mathbf{P}'^{\wedge} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 & Z' & -Y' \\ 0 & 1 & 0 & -Z' & 0 & X' \\ 0 & 0 & 1 & Y' & -X' & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 6} \end{aligned} J3=[I−P′∧]=⎣ ⎡1000100010−Z′Y′Z′0−X′−Y′X′0⎦ ⎤∈R3×6
注意:
- 上面的 ξ \boldsymbol{\xi} ξ 中 平移 ρ \boldsymbol{\rho} ρ 在前, 旋转 ϕ \boldsymbol{\phi} ϕ 在后;如果 旋转在前,平移在后,则 J 3 \mathbf{J}_3 J3 的前三列与后三列须对调。
- ch4 为什么能用左扰动模型来求导啊?[gaoxiang12/slambook Issues #183]
按照定义,左乘一个扰动,然后令扰动趋于零,求目标函数相对于扰动的变化率,作为导数来使用。同时,在优化过程中,用这种导数算出来的增量,以左乘形式更新在当前估计上,于是使估计值一直在SO(3)或SE(3)上。这种手段称为“流形上的优化”。
- 四元数矩阵与 so(3) 左右雅可比
总结
直接法
J ( ξ ) = J 0 ⋅ J 1 ⋅ J 2 ⋅ J 3 = ∂ I 2 ( p ′ ) ∂ p ′ ⋅ [ f x 0 0 f y ] ⋅ [ 1 0 − X ′ Z ′ 0 1 − Y ′ Z ′ ] ⋅ [ 1 0 0 0 Z ′ − Y ′ 0 1 0 − Z ′ 0 X ′ 0 0 1 Y ′ − X ′ 0 ] ⋅ 1 Z ′ \begin{aligned} \mathbf{J}(\boldsymbol{\xi}) &= \mathbf{J}_0 \cdot \mathbf{J}_1 \cdot \mathbf{J}_2 \cdot \mathbf{J}_3 \\ &= \frac{\partial \mathbf{I}_2(\mathbf{p}')}{\partial \mathbf{p}'} \cdot \begin{bmatrix} f_x & 0 \\ 0 & f_y \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -\frac{X'}{Z'} \\ 0 & 1 & -\frac{Y'}{Z'} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & Z' & -Y' \\ 0 & 1 & 0 & -Z' & 0 & X' \\ 0 & 0 & 1 & Y' & -X' & 0 \end{bmatrix} \cdot \frac{1}{Z'} \end{aligned} J(ξ)=J0⋅J1⋅J2⋅J3=∂p′∂I2(p′)⋅[fx00fy]⋅[1001−Z′X′−Z′Y′]⋅⎣ ⎡1000100010−Z′Y′Z′0−X′−Y′X′0⎦ ⎤⋅Z′1
特征点法
J ( ξ ) = J 0 ⋅ J 1 ⋅ J 2 ⋅ J 3 = I ⋅ [ f x 0 0 f y ] ⋅ [ 1 0 − X ′ Z ′ 0 1 − Y ′ Z ′ ] ⋅ [ 1 0 0 0 Z ′ − Y ′ 0 1 0 − Z ′ 0 X ′ 0 0 1 Y ′ − X ′ 0 ] ⋅ 1 Z ′ = [ f x Z ′ 0 − X ′ f x Z ′ 2 − X ′ Y ′ f x Z ′ 2 f x + X ′ 2 f x Z ′ 2 − Y ′ f x Z ′ 0 f y Z ′ − Y ′ f y Z ′ 2 − f y − Y ′ 2 f y Z ′ 2 X ′ Y ′ f y Z ′ 2 X ′ f y Z ′ ] \begin{aligned} \mathbf{J}(\boldsymbol{\xi}) &= \mathbf{J}_0 \cdot \mathbf{J}_1 \cdot \mathbf{J}_2 \cdot \mathbf{J}_3 \\ &= \mathbf{I} \cdot \begin{bmatrix} f_x & 0 \\ 0 & f_y \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -\frac{X'}{Z'} \\ 0 & 1 & -\frac{Y'}{Z'} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & Z' & -Y' \\ 0 & 1 & 0 & -Z' & 0 & X' \\ 0 & 0 & 1 & Y' & -X' & 0 \end{bmatrix} \cdot \frac{1}{Z'} \\ &= \begin{bmatrix} \frac{f_x}{Z'} & 0 & -\frac{X'f_x}{Z'^2} & -\frac{X'Y'f_x}{Z'^2} & f_x+\frac{X'^2f_x}{Z'^2} & -\frac{Y'f_x}{Z'} \\ 0 & \frac{f_y}{Z'} & -\frac{Y'f_y}{Z'^2} & -f_y-\frac{Y'^2f_y}{Z'^2} & \frac{X'Y'f_y}{Z'^2} & \frac{X'f_y}{Z'} \end{bmatrix} \end{aligned} J(ξ)=J0⋅J1⋅J2⋅J3=I⋅[fx00fy]⋅[1001−Z′X′−Z′Y′]⋅⎣ ⎡1000100010−Z′Y′Z′0−X′−Y′X′0⎦ ⎤⋅Z′1=[Z′fx00Z′fy−Z′2X′fx−Z′2Y′fy−Z′2X′Y′fx−fy−Z′2Y′2fyfx+Z′2X′2fxZ′2X′Y′fy−Z′Y′fxZ′X′fy]
注意事项
- J 1 \mathbf{J}_1 J1 的计算是根据 针孔相机模型(不考虑畸变) 进行计算的
- 本文的 ξ \boldsymbol{\xi} ξ 中 平移 ρ \boldsymbol{\rho} ρ 在前, 旋转 ϕ \boldsymbol{\phi} ϕ 在后;如果 旋转在前,平移在后,则 J 3 \mathbf{J}_3 J3 的前三列与后三列须对调
- 本文定义的 误差函数 r ( ξ ) r(\boldsymbol{\xi}) r(ξ) 为 预测值减观测值;如果定义成 观测值减预测值,本文计算的结果 J \mathbf{J} J 前须加 负号
参考文献
- SLAM优化位姿时,误差函数的雅可比矩阵的推导
- 《视觉SLAM十四讲》