一文读懂相分离(图文详解)

相分离是物理化学概念,细胞内液液相分离成研究热点。其原理高度依赖溶液内容物、物化性质和环境,是高度动态现象。相分离有多种分子功能,在生物信息学中,可利用生物序列等预测蛋白和RNA相分离能力,还有相关研究工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

什么是相分离?

相分离的原理

相分离的分子功能

生物信息中的相分离

一、什么是相分离?

相分离 (phase separation) 本身是一个物理化学概念,二元或多元混合物会在一定的条件下分离为不同的相。

生活中可以见到水上漂浮的油滴,就是一种相分离现象。一共两种相,即水和油,由于都是液体,也叫液液相分离(LLPS,liquid-liquid phase separation)。

img

回顾下我们幼儿园学过的知识:

生物进化过程中,在细胞内会用膜分割一些执行特定生物学功能的空间,称为有膜细胞器,这其中就有我们熟悉的线粒体,高尔基体等。

这样的好处是方便构建特定反应体系和反应环境,并避免膜内蛋白或反应物质影响外界环境。比如,线粒体的细胞色素 C 如果释放到胞质内,将导致细胞凋亡。

最为神秘的就是无膜细胞器,无膜细胞器在一些研究中也叫液滴(liquid droplet)或者是液态凝聚体(liquid condensates)。

它们在没有膜的束缚下,可以形成与外界环境隔离的稳定反应空间,并可以发生频繁物质交换。

下图中展示了目前大家已发现的部分无膜细胞器。

img

无膜细胞器是如何形成的?这是一个困扰大家许久的问题,谁也没有想到事情的转机出现在两位研究生身上。

David Courson 和 Lindsay Moore 暑期在马萨诸塞州伍兹霍尔海洋生物实验室学习显微镜的操作。导师 Hyman 给他们布置的课题是观察线虫卵中RNA和P颗粒的形成。

在实验中,他们观察到 P 颗粒类似于游走在细胞质内的液滴,会互相碰撞,融合。

img

2009 年,Hyman 团队通过 P 颗粒液体的特性,证明了相分离的形成。作者认为在细胞内部相分离可以让细胞内特定分子聚集,随后在繁杂的细胞内环境中形成一片特定反应的净土。这一观点为生命科学研究提供了崭新的思路。

Germline P granules are liquid droplets that localize by controlled dissolution/condensation

随后,Michael Rosen 和 Steven McKnight 团队分别研究了蛋白质和 RNA 分子在细胞内的相分离现象。重要的是,他们通过生化手段实现了在体外重现体内相分离现象,从而降低了大家相分离实验难度。

Phase transitions in the assembly of multivalent signalling proteins

Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels

这些开创性研究促使细胞内液液相分离成为新的研究热点。

二、相分离的原理

液液相分离高度依赖溶液内容物,物化性质和环境。如温度,生物大分子浓度,盐离子浓度,pH 等。

img

如上图,系统在两相状态,一般分为轻相(C = CL)和稠相( c = CD),

极端条件下,只能形成图中 1,5 的单相状态,也就是只有轻相(light phase),稠相(dense phase)。

不同的条件下,可以形成图中 2,3,4 这几种两相状态,并可以根据条件互相转换。

需要注意的是相分离是一种高度动态的现象。

除了上述常见的液滴状态,液液相分离可能转变为凝胶状态,并且该状态不可逆转。比如,阿尔兹海默症等体内形成的amyloid-like fibers的形成可能与之相关。

异常的液-固相分离也会导致的渐冻人症。在体外实验中,FUS 朊病毒样蛋白会与其他分子形成小液滴,并逐步增加液滴粘稠度,最终形成固相,导致病变。

img

三、相分离的分子功能

目前已知的分子功能:

  • 用于快速传递、自适应和可逆响应,比如热胁迫适应性反应
  • 缓存细胞内的蛋白质浓度
  • 局部凝聚反应分子,如形成细胞骨架结构和成核
  • 隔离反应分子以防止或抑制生化反应
  • 介导蛋白质定位
  • 塑造细胞结构(如膜)的机械力,从而影响细胞形态
  • 形成物理化学和机械过滤结构,如核孔的孔径还由凝聚物分子数决定

img

四、生物信息中的相分离

现在认为影响相分离的力,包含多价阳离子-π、π-π、电荷相互作用和疏水效应等,这些特征与相分离能力有关。

对于蛋白质,以多个折叠构成结构域的蛋白质(如 SH3 结构域)与含有内部无序区(IDR)的蛋白质会相互作用。因此,利用生物序列,化合价以及结构特征,可以预测蛋白的相分离能力和饱和浓度。

其中,IDR 是相分离蛋白中一种常见的结构域。在其一级序列中的疏水氨基酸会调控相分离中的浓度,而带电氨基酸又会影响凝聚物的出现。因此,可以通过一级序列推断蛋白质相分离能力,相变临界浓度等。

对于 RNA,含有 IDR 区域的蛋白质会有 RNA 结合结构域,RNA 也会有蛋白质结合序列。利用 RNA 与 蛋白质的结合特征也可以预测相分离能力。

根据上述理论也提出了一些相分离的研究工具:

  • PhaSepDB(http://db.phasep.pro/):相分离相关蛋白数据库
  • RNAPhaSep(http://www.rnaphasep.cn/):相分离相关RNA数据库
  • Pi-Pipredictor: 利用 pi-pi contacts 预测相分离
  • ZipperDB: 利用 fibril-forming 片段预测相分离

参考

  1. Alberti,S., Gladfelter,A. and Mittag,T. (2019) Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, 176, 419–434.

  2. Banani,S.F., Lee,H.O., Hyman,A.A. and Rosen,M.K. (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol, 18, 285–298.

  3. Patel,A., Lee,H.O., Jawerth,L., Maharana,S., Jahnel,M., Hein,M.Y., Stoynov,S., Mahamid,J., Saha,S., Franzmann,T.M., et al. (2015) A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell, 162, 1066–1077.

  4. Kato,M., Han,T.W., Xie,S., Shi,K., Du,X., Wu,L.C., Mirzaei,H., Goldsmith,E.J., Longgood,J., Pei,J., et al. (2012) Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels. Cell, 149, 753–767.

  5. Kato,M., Han,T.W., Xie,S., Shi,K., Du,X., Wu,L.C., Mirzaei,H., Goldsmith,E.J., Longgood,J., Pei,J., et al. (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell, 149, 753–767.

  6. Li,P., Banjade,S., Cheng,H.-C., Kim,S., Chen,B., Guo,L., Llaguno,M., Hollingsworth,J.V., King,D.S., Banani,S.F., et al. (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature, 483, 336–340.

  7. Brangwynne,C.P., Eckmann,C.R., Courson,D.S., Rybarska,A., Hoege,C., Gharakhani,J., Jülicher,F. and Hyman,A.A. (2009) Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation. Science, 324, 1729–1732.

### Transformer编码器工作原理 #### 编码器架构概述 Transformer模型中的编码器由多个相同的层堆叠而成。每一层主要包含两个子层:一个多头自注意力机制(Multi-head Self-Attention Mechanism),以及一个全连接前馈网络(Feed Forward Network)。这些组件共同作用来处理输入数据并生成上下文感知的特征向量[^1]。 #### 多头自注意力机制 多头自注意力允许模型在不同的位置上关注输入的不同部分,从而捕捉到更丰富的语义信息。具体来说,在每个多头自注意单元内部,会计算查询键值三元组(Q,K,V),并通过矩阵运算得到加权求和的结果作为输出。此过程可以理解为对同一句话里的各个单词之间相互影响程度的一种量化描述。 为了增强表达能力,实际应用中通常采用多个平行运行的小型自注意力模块——即所谓的“头部”,最后再把这些头部产生的结果拼接起来形成最终输出。这种设计使得模型能够同时学习不同类型的关联模式[^2]。 ```python import torch.nn as nn class MultiHeadSelfAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadSelfAttention, self).__init__() assert d_model % num_heads == 0 self.d_k = d_model // num_heads self.num_heads = num_heads # 定义线性变换参数WQ,WK,WV用于产生q,k,v ... def forward(self, Q, K, V, mask=None): ... ``` #### 前馈神经网络(FFN) 紧跟其后的是一系列两层的全连接层组成的前馈神经网络。它接收来自前面一层经过归一化之后的数据,并通过激活函数引入非线性特性。值得注意的是,这里的权重在整个序列长度维度上共享,意味着对于同一个时间步内的所有元素都施加相同的操作。 ```python class FeedForwardNetwork(nn.Module): def __init__(self, d_model, hidden_size): super(FeedForwardNetwork, self).__init__() self.linear_1 = nn.Linear(d_model, hidden_size) self.relu = nn.ReLU() self.linear_2 = nn.Linear(hidden_size, d_model) def forward(self, x): return self.linear_2(self.relu(self.linear_1(x))) ``` #### 层规范化与残差连接 除了上述核心部件外,还有一个非常重要的细节就是加入了Layer Normalization 和 Residual Connection 。前者有助于加速训练收敛速度;后者则能有效缓解深层网络可能出现的信息传递衰减问题,确保梯度稳定流动。 ![transformer_encoder](https://miro.medium.com/max/784/1*ZvYbJjzX9hLgUOaPmDyGGA.png)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白墨石

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值