摘要
背景:EEG是一种非侵入性、成本效益高且稳健的工具,能够以高时间分辨率直接测量体内神经元的整体活动。结合先进的机器学习(ML)技术,EEG记录可以提供有关精神疾病的计算机模拟生物标志物。
假设:病理性和生理性衰老过程会影响精神分裂症(SCZ)和重度抑郁症(MDD)的电生理特征。
研究设计:本研究从一个单中心队列(N=735,51.6%为男性)中采集了19通道的静息态EEG记录,该队列包括健康对照组(HC,N=245)以及精神分裂症(SCZ,N=250)或重度抑郁症(MDD,N=240)的患者。使用重复嵌套交叉验证,训练支持向量机模型(1)对SCZ或MDD患者与HC组进行分类,以及(2)预测HC个体的年龄。将年龄模型应用于患者组,以计算电生理年龄差距估计(EphysAGE),作为预测年龄与实际年龄之间的差异。随后,本研究进一步探索了EphysAGE、诊断结果和药物使用之间的关系。
研究结果:分类模型能够稳健地区分SCZ与HC组(平衡准确率,BAC=72.7%,P<.001)、MDD与HC组(BAC=67.0%,P<.001),以及SCZ与MDD患者(BAC=63.2%,P<.001)。值得注意的是,中央α(8-11Hz)功率降低是SCZ和MDD最一致的预测特征。在HC和MDD中,较高的EphysAGE与被误分类为SCZ的可能性增加相关(ρHC=0.23,P<.001;ρMDD=0.17,P=.01)。
结论:机器学习(ML)模型可以提取MDD和SCZ的电生理特征,具有潜在的临床应用价值。然而,衰老过程可能会影响诊断区分性,因此需要尽早应用这些模型以提高早期识别的准确性。
引言
自1929年Hans Berger试图理解“精神能量”以来,EEG一直被用于测量大规模的神经活动。多年来,严重精神疾病(SMIs)的脑电模式既不同又常见。在基于EEG的静息态频段定量分析中,发现精神分裂症(SCZ)和重度抑郁症(MDD)都存在增加的δ(1-4 Hz)和θ(4-8Hz)活动,这被认为是EEG活动普遍减慢的指标,并与功能失调的认知加工有关。此外,δ波是睡眠和麻醉状态下的主要慢节律,而θ波与工作记忆、感觉刺激感知和注意控制有关。SCZ患者的α波(8-12Hz)和γ波(30-100Hz)存在异常,这些异常与额叶功能低下以及神经网络同步受损有关,从而影响感知和高级认知功能。然而,与健康对照组(HC)相比,MDD患者的α和β(12-30Hz)活动均未显示出显著的功率变化。但在MDD患者中出现了不同的模式,其特征是左半球额区的α活动比右半球更强,这种现象被称为α不对称性。这种α不对称性被认为源于MDD的情绪处理紊乱。在连接性方面,研究结果各异,一些研究报告SMI的EEG连接性增加,而其他研究则发现连接性减少。
机器学习(ML)的最新进展和计算能力的提升重新引发了人们对EEG技术的兴趣,它被视为是研究精神疾病(SMI)神经生物学模式的一种强大且高效的工具,并有可能提供直接的神经生物标志物。机器学习能够识别精神疾病的复杂模式,并已成功应用于基于电生理数据的SMI检测。基于EEG的模型在识别SCZ患者时的准确率超过71%,而识别MDD患者时的准确率高达89%。在区分SCZ和MDD方面,机器学习模型的准确率达到了约60%。然而,这些高准确率很可能是由于模型在小样本上过拟合的结果。因此,需要严格的交叉验证方案、验证分析和全面的泛化性评估,以检验这些模型在实际应用中的稳健性。此外,探索驱动这些诊断模式的潜在神经机制可以为SMIs的病理生理学提供有价值的见解,并有助于开发更具针对性的干预和治疗方法。
脑龄差距估计(BrainAGE)是一种很有前景的脑发育异常测量方法。BrainAGE利用监督式机器学习来构建规范性的衰老模型,这些模型首先在健康个体(HC)中进行训练,以预测他们的年龄,然后再将这些模型应用于患者群体,最终得出一个神经生物学上预测的年龄。BrainAGE是预测年龄与实际年龄之间的年龄差,即量化大脑结构老化加速或减速的个体化指标。目前,已经在SMIs中发现了BrainAGE增加的证据。首发精神病患者的BrainAGE偏差较小,介于+1.17到+3.39年之间,而SCZ患者的BrainAGE则显著增加,范围从+2.56到+9.00年。在抑郁症中,BrainAGE的影响不太明显,有些研究的结果不显著,而其他研究则显示BrainAGE的分数可高达+4年。然而&