PNAS | 社交拒绝如何影响我们对关系价值的认知?

摘要

社交拒绝虽然会带来痛苦,但也能提供重要信息:通过接纳与拒绝的经历,人们能够识别哪些人愿意与自己建立联系,从而决定是巩固还是切断某些关系。那么,我们能从社交拒绝中学到什么呢?在人际交往中,人们可以从两种信息中学习:一是从奖赏性结果中学习,通常包括实际的互动机会;二是从他人赋予自己的“关系价值”中学习,即他人如何看待自己在他们心中的位置。本文通过计算神经成像揭示了这两种学习机制的区别。参与者在社交游戏中反复尝试与他人匹配,反馈信息包括是否成功匹配(即奖赏性结果),以及对方对互动的兴趣或重视程度(即关系价值)。贝叶斯认知模型表明,参与者倾向于选择那些能带来积极回报或重视自己的伙伴。研究发现,从结果中学习与大脑奖赏强化区域相关,而从关系价值中学习则涉及到那些通常与社交拒绝相关的脑区。这些结果揭示了大脑对社交拒绝反应背后的精确计算机制,并支持社会关系的神经计算模型,即该模型认为人们通过感知和学习与他人关系的价值,并通过奖赏反馈来调整自己的社交行为。

引言

拒绝令人痛苦:社交拒绝会引发痛苦的情绪、压力反应、自信心下降,甚至引发更强烈的攻击性行为,这些都会对个体的健康带来不利影响。然而,被拒绝也能提供有价值的信息:人们能够了解哪些人可能更愿意接受自己,从而调整未来的社交策略。当人们学会了哪些关系值得维持,哪些关系需要放弃时,他们就能够投入更多精力在那些可能会回报关心的关系上,从而形成一种蓬勃发展且健康的人际关系。当人们未能有效学习时,他们可能会低估那些关心自己的伙伴,或高估那些对自己漠不关心的伙伴,从而阻碍了他们建立一个支持性的社交网络。因此,这种学习在人际连接中起着决定性的作用:就像生物如果不学会寻找食物就无法进食一样,人们如果无法识别愿意与自己建立关系的伙伴,就无法进行有效的社交连接。那么,人脑是如何通过过去的拒绝和接受经历来学习并构建人际关系的呢?

当被拒绝时,人脑的某些区域会被激活,包括背侧和腹侧前扣带回(dACC和vACC)、前岛叶(AI)和腹外侧前额叶皮层(vlPFC)——这些区域被认为是“社交拒绝”网络。这些反应被解释为反映了社交痛苦,因为这些脑区在应对身体疼痛和疼痛调节时也会被激活。相反,当人们感受到被接纳时,他们的腹侧纹状体(VS)会被激活——该区域与奖赏和积极情绪密切相关。因此,这些反应可能反映了人际关系中的痛苦与愉悦情感。

然而,这些大脑区域在学习中也发挥着关键作用。例如,背侧前扣带回(dACC)参与对环境认知模型的更新;而腹外侧前额叶皮层(vlPFC)则与修正对他人或物体印象的过程有关。与此同时,腹侧纹状体(VS)处理奖赏预测误差——即预期奖励与实际获得奖励之间的差异——帮助人们学习重复那些带来超出预期奖励的行为。因此,这些脑区可能并不是直接反映社交中的痛苦与愉悦,而是反映了从社交经验中学习的过程。

与这种可能性相一致的是,近期研究表明,与中性反馈相比,背侧前扣带回(dACC)和前岛叶(AI)在面对拒绝和接纳时表现出更强烈的反应——这两种反应都可能促使人们更新他们的预期。然而,目前仍不确定这种活动所代表的学习信号是什么,或者这些发现是否反映了对期望违背(expectancy violation)的更一般性反应。计算神经成像可以为这些区域在应对社交拒绝时的功能作用提供独特的见解,帮助揭示它们如何促进适应性或不适应性的行为。

在这里,本研究测试了两种可能的计算方式,旨在揭示人们从社交接纳和拒绝中学习时的大脑激活模式。参与者通过接纳和拒绝的经历学习如何与他人建立联系,并使用计算神经成像方法来区分这些学习过程中涉及的不同认知计算。参与者在一场经济游戏中反复尝试与其他玩家配对。反馈信息显示了其他人对匹配的感兴趣程度,从而提供了一个关系价值线索;反馈信息还显示了其他人是否成功与他们匹配,从而提供了一个奖赏性的接纳结果。此外,本研究测试了大脑的社交拒绝网络是否会根据不同类型的反馈(负面反馈、惊讶事件、社交关系价值的评估等)作出反应,并探索这些反应是否与社交痛苦、期望违背和学习机制有关。通过将不同的学习计算与大脑相联系,使我们能更好地理解大脑社交排斥网络如何影响个体的行为和心理健康。

材料和方法

参与者

从南加州大学社区招募了42名参与者(平均年龄为22.36±4.60岁,22名女性)。所有参与者均为右利手,英语流利,视力正常或矫正至正常,且无精神疾病或神经系统疾病史,身体中无任何金属植入物或金属部件。其中有两名参与者的数据因采集设备问题被剔除。所有参与者根据南加州大学研究受试者保护办公室的批准签署了知情同意书,并且研究程序已经获得了相关伦理审批。

实验范式

在一份初步的在线调查中,参与者填写了六个开放式的“让大家了解你”的问题,这些问题会被其他玩家查看,从而形成对参与者的印象。参与者随后完成了成人拒绝敏感性量表。

五到十天后,参与者完成了实验的第二阶段,即在完成社交游戏的同时接受fMRI扫描。参与者在每轮中都会看到两个(从八个预设头像中选出)与自己性别相匹配的虚拟“决策者”头像(这里的“决策者”是指在游戏中负责做出决定的角色),并需要选择其中一个头像进行进一步的匹配。反馈信息是独立变化的,决策者会提供关于排名和匹配概率的高低两种选择(见图1B)。如果参与者与所选择的决策者匹配成功,将进入信任游戏,在这个游戏中,参与者可以选择将决策者发送的积分的一半返还给对方,或者保留全部积分。如果没有匹配成功,屏幕上会显示“无游戏”字样,显示时间与游戏时长相同。此期间前后分别有一个随机的试次间隔(1至8秒)。参与者在六个实验阶段中完成了96轮任务。排名明确与排名隐藏的试次通过伪随机方式交替进行,且同一类型的试次不能连续出现超过八次。详细的任务程序和说明见附录SI。

扫描后测量

扫描结束后,参与者使用滑动量表对每个决策者对他们的喜欢程度进行评分,评分范围从0(一点也不)到100(非常喜欢)。同时参与者还评估了他们对自己估计的信心,评分范围同样是从0(一点也不)到100(非常有信心)。为了验证计算模型,参与者需要判断每个决策者会如何给自己排名(从1(最高)到8(最低)),并且评估自己对这些排名估计的信心。出于探索性的目的,参与者还需要评估他们在未来参与合作解谜任务时,愿意与每个决策者合作的程度,评分范围从0(一点也不)到100(非常愿意)。

计算模型

在学习任务中的选择被拟合到一个贝叶斯强化学习模型,该模型改编自先前的研究。该模型假设受试者使用贝叶斯推理来更新对结果的估计(即与决策者匹配的概率)和关系价值的估计(即决策者通常如何给他们排名),并在之后的选择中基于这些更新后的估计做出决策。该模型针对每个决策者都有两种信念分布:一种是结果分布(描述与决策者匹配的概率);另一种是排名分布(描述每个决策者预期给出的排名)。这些分布初始化为均匀分布,其中结果分布的范围为0到1,排名分布的范围为1到8。在每个试次中,当参与者获得反馈时,这些分布会被更新,即模型会根据这些反馈调整之前的结果分布和排名分布。

任务后评分分析

对扫描后收集的参与者被喜欢程度评分进行一个2(排名:高、低)×2(结果:高、低)×2(排名可见性:可见、隐藏)的重复测量方差分析(ANOVA)。为了考察个体差异,本研究计算了“排名依赖性”(Rank Reliance),即[正排名]−[负排名]决策者的评分,且在计算时忽略决策者所提供的不同结果;以及“结果依赖性”(Outcome Reliance),即[正面结果]−[负面结果]决策者的评分,且在计算时忽略了决策者所给出的不同排名。[排名依赖性]−[结果依赖性]的差值作为指数,表示参与者评分对每种反馈类型的敏感程度。

fMRI数据采集

所有图像均使用西门子Trio 3.0T MRI扫描仪采集。功能图像(TR=2000ms;有效TE=25ms;翻转角度=90°;41个3mm层,间隙为0mm,全脑覆盖;矩阵=64×64;视野=192×192mm;采集体素大小=3×3×3.00mm)采用与南加州大学Dana和Dornsife认知神经成像中心合作开发的定制回波平面成像序列进行采集。相位编码方向为前后。

fMRI数据预处理

使用fmriPrep 20.2.1的默认处理流程对图像进行预处理,包括时间层校正、共配准、运动校正以及重采样至蒙特利尔神经研究所模板。对于单变量分析,还使用SPM12软件进行了8mm核的平滑处理。对于表征相似性分析,则使用4mm核进行平滑处理。

一般线性模型分析

使用SPM12软件进行分析。本研究对每个试次进行了一般线性模型(GLM)分析,分析了每个试次中选择、反馈和信任游戏选择的起始时间(如果未匹配,则为延迟期)。每个反馈事件通过时间序列进行参数化调节,时间序列分别代表奖赏和关系价值的符号化更新、无符号更新和奖励惊喜,这些时间序列均来自计算模型。所有参数回归变量均输入到同一个模型中,确保每个回归变量具有唯一的方差。对于感兴趣区域的分析,本研究在以往的社交痛苦元分析中识别出的vACC峰值体素[4,36,−4]和dACC峰值体素[8,24,24]周围生成了10mm的球形区域。

结果

四十名参与者参加了一个社交游戏,在这个游戏中,他们与其他玩家进行互动,而此时的这些其他玩家实际上是通过计算机生成的响应。在初始阶段,参与者填写了一份关于自己的资料,内容包括与他们的可信度相关的问题(例如:“描述一次你很诚实的经历,尽管你不一定要诚实”)。一周后,他们被告知自己参加的是一个连续研究,在这个研究中,他们将看到过去一周由其他参与者做出的预录决策。具体来说,他们被告知,扮演“决策者”角色的参与者已经阅读了包括自己在内的所有参与者的个人资料,并根据这些资料形成了对他们的印象。基于这些印象,决策者已经根据他们的印象做出了选择,决定了希望与哪些回应者作为信任游戏中的合作伙伴。在每轮游戏中,决策者可以将一定数量的积分(可以兑换成钱)发送给多个回应者;这些积分会被放大三倍,然后回应者则选择是否将其中的一半积分返还给决策者,或者全部保留。每一轮中,决策者都要对多个潜在回应者的合作意愿进行排名。

在每轮游戏中,参与者需要找到一个可以匹配的决策者,才能进入游戏。参与者会反复尝试与决策者配对,并从屏幕上提供的两个决策者中选择一个(图1A)。参与者的互动选择之后会收到反馈,反馈内容包括:i)所选玩家是如何将参与者与其他七个回应者进行排名的(反映了关系价值);以及ii)参与者是否成功与所选伙伴匹配(反映了正面或负面的结果)。决策者有时可以与多个回应者一起游戏(例如,与他们排名前七的回应者匹配,并向所有人发送积分),而有时则只能与少数人一起游戏(例如,与他们排名前两的回应者匹配)(图1B)。这个程序确保了关系价值和奖赏结果是独立的。在以往的行为研究中,这两种反馈对情感的影响是独立的,即参与者在获得良好排名和成功匹配后会感觉更好,而在获得较差排名和未能匹配时则感觉较差。同时,这两种类型的反馈也促进了学习,即参与者倾向于选择那些给自己高排名并且与自己匹配的伙伴。因此,这项任务被用于研究大脑中的学习计算。

图1.任务设计示意图和反馈模式概况。

在一半的试次中,参与者会明确看到他人对自己的排名,这模拟了人们明确发现关系价值的情形,比如一名求职者得知自己是第二名候选人的情景。在另一半的试次中,参与者则需要根据长期模式推测自己的排名,这类似于人们在面对更模糊线索时的情境。例如,如果任务中的决策者反复只在七人组中接纳参与者,而从未在六人组中接纳该参与者,那么参与者可以推测该决策者将其排在第七位。排名明确和排名隐藏的试次被伪随机地交替进行,以避免任何潜在的顺序效应或偏差。四个决策者始终提供明确的反馈,另外四个决策者则始终提供隐藏的反馈,参与者每次都在相同类型的两个决策者之间做选择,确保参与者不会根据自己将获得的信息量来选择决策者。因此,该任务的这一特征测试了大脑从明确和推测反馈中学习的神经反应。

参与者的选择反映了对关系价值和接受结果的学习

为了量化随时间变化的学习过程,本研究将行为拟合到贝叶斯认知模型(图2A)。该模型在每个试次中会根据新的数据或反馈更新两个信念。首先,模型假设参与者会根据对方的反馈调整自己对关系价值的内在评估,并通过这种评估的信念分布来反映对方如何对其进行排名。其次,模型假设参与者会更新他们的奖励预测,并通过这种预测的信念分布来反映对方与自己匹配的概率。在每个试次中,基于反馈更新信念的先验分布,形成每种信念类型的后验分布。这两种信念通过加权平均的方式结合起来,用于估计选择某个玩家的价值,并使用一个自由参数(w)进行拟合,该参数决定了选择依据过去接纳结果(w=0)或关系价值(w=1)的权重。

图2.贝叶斯学习模型的示意图,以及该模型与参与者实际行为中观察到的选择模式之间的对比。

与之前的行为研究结果一致,同时考虑关系价值(排名)和奖赏价值(匹配概率)的模型比仅包含一种策略的模型更能有效地拟合数据。此外,使用该模型模拟的数据重现了行为结果的关键模式,即参与者在选择“决策者”时,更可能基于两个因素:在之前的试次中获得了正面结果和较高的排名(图2B和C)。因此,参与者在选择合作伙伴时,不仅依赖于他们在先前互动中得到的奖励,还会根据他们与合作伙伴之间的关系价值来做出判断。

社交拒绝网络的活动反映了社会学习

接下来,本研究考察了反馈期间的神经活动是否反映了社交痛苦、期望违反,或与关系价值和奖励相关的不同学习计算。研究结果发现,在逐试次分析中,社交拒绝网络中的反应——包括背侧前扣带回(dACC)、腹侧前扣带回(vACC)、前岛叶(AI)和腹外侧前额叶皮层(vlPFC)——与排名的无符号模型更新相关联(图3A)。因此,当人们更新关于他人如何评价自己的信念时,无论是更好还是更差,这些区域的激活都会更加强烈。此外,在背侧纹状体和颞上沟区域也出现了激活,这些脑区激活在之前关于社会学习和非社会学习的研究中也曾被观察到。

图3.统计图显示了与关系价值和奖励的信念更新相关的显著大脑激活。

腹侧纹状体(VS)的活动与学习奖赏结果有关

正向结果更新与双侧VS中的BOLD信号相关(图3B),该区域是一个与奖赏学习密切相关脑区。在内侧眶额皮层中也观察到了激活,这是一个在奖赏学习和基于价值的选择过程中常见的反应区域。这一发现表明,参与者部分通过奖赏强化机制来学习与他人建立联系。这些发现区分了两种不同的学习机制,通过这两种机制人们学会了如何与他人建立联系,并明确了社交拒绝网络在更新关系价值内部模型中的作用。

具有相似关系价值的玩家在社交拒绝网络中的编码方式更为相似

研究结果发现,社交拒绝网络中的大脑区域会对关系价值的变化做出反应。这些区域是否也编码了关系价值的内部模型?为了验证这种可能性,使用表征相似性分析(RSA)研究了这些区域的体素模式。如果这些区域编码了参与者的内部关系价值模型,那么当参与者看到对其评价相似的决策者时,这些区域的体素模式应该是相似的。

对于每个参与者,本研究提取了每个决策者在这些区域中引发的平均体素模式,并计算了每对决策者引发的平均模式之间的相关性,从而生成了决策者之间的神经相似性度量。类似地,本研究还计算了每对决策者在任务后评分中的绝对差异,从而生成了一个关于被喜欢的主观感知上的(不)相似性度量(图4A)。在所有参与者中,那些在任务过程中引发更相似体素模式的决策者,在任务结束后也会被参与者评价为更相似(P<0.001)。因此,对排名更新做出反应的脑区反映了参与者对每个决策者被喜欢程度的最终主观评价。

图4.RSA示意图。

接下来,本研究计算了反馈过程中每对试次之间的体素模式相似性。然后,使用计算模型来估计参与者在每对试次中是否感知到了相似的关系价值和相似的结果概率。通过回归分析方法,检验了排名相似性和结果相似性对神经相似性的独立影响(图4B)。研究结果发现,当参与者对伙伴提供的排名有更相似的信念时,其体素模式也更加相似(P=0.004)。因此,与排名更新相关区域的体素模式反映了每个试次中参与者对排名的信念,这些信念是通过计算模型估算出来的,并且能够预测每个决策者的主观感知(由参与者自我报告)。

奖赏结果“破坏”了关系价值的认知

虽然参与者是通过不同的计算来了解排名和结果的,但这些学习形式在他们的主观认知中并不一定是独立的。在游戏中,“决策者”只能控制他们如何给“回应者”排名,这意味着只有排名才是关系价值的有效信号;匹配与否取决于实验者允许的伙伴数量,而这是“决策者”无法控制的。然而,VS中的奖赏反应会使贝叶斯推断产生偏差。因此,过去的研究表明,奖赏结果会使社会印象产生偏差:奖赏会促使人们产生积极情绪,从而对提供大量奖励的人产生好感。因此,当两个合作伙伴给出的排名相同,但其中一个提供了更多的正面结果时,人们往往会对后者的关系价值产生夸大的印象。与这一观点一致的是,本研究中参与者对决策者的评价不仅受排名的影响,而且还受到结果偏见的影响(图5)。因此,这种结果偏见“破坏”了参与者对关系价值的主观认知。

图5.对被喜欢的主观感知。

结论

本研究揭示了两种神经计算机制,帮助人们在经历接纳或拒绝后,学会如何选择接近或回避他人,并将过去的社交反馈转化为未来的社交行为。这项研究深入探讨了大脑在应对拒绝时的神经反应,阐明了不同脑区在处理接纳或拒绝信息时的计算过程,同时描述了人们如何从社交反馈中推导出行为决策。通过明确社交反馈如何指导个体选择,这些发现为今后的研究提供了启示,帮助人们学会如何在日常生活中与他人建立联系,从而建立有助于身心健康的积极关系。

参考文献:B.G. Babür, Y.C. Leong, C.X. Pan, L.M (2024). Hackel, Neural responses to social rejection reflect dissociable learning about relational value and reward, Proc. Natl. Acad. Sci. U.S.A. 121 (49) e2400022121, https://doi.org/10.1073/pnas.2400022121

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值