儿童执行功能潜在因素的脑结构基础

摘要

执行功能通常包括抑制控制、工作记忆和任务切换三个方面,这三者共同支持灵活和目标导向的行为,对个体当前及未来的生活结果都至关重要。大量文献已确定了与这些功能密切相关的脑区,但这些研究大多基于单一任务,因此尚不清楚这些关联是否真正反映了执行功能本身,还是仅与特定任务有关。在这里,本研究对141名6-13岁的儿童进行了9项执行功能任务测试,提取了抑制、工作记忆和任务切换的潜在因素,并考察了这些因素与大脑结构标志物(全脑皮层厚度)之间的关系。研究结果发现,工作记忆与右侧额上叶和左内侧颞叶的皮层厚度相关,任务切换则与双侧额叶、枕叶、左内侧颞叶和前颞叶的皮层厚度有关。虽然工作记忆和任务切换在右侧额上叶以及左侧颞中和颞下区域共享相同的神经基础,但未发现与抑制功能相关的显著脑区。

引言

实现短期和长期目标需要有意识地控制自己的思维和行为。执行功能(EFs)描述了一组认知过程,这些过程使得目标导向的行为得以实现。具体来说,有三个核心的执行功能:抑制优势反应和冲动(抑制),保持和操作与目标相关的信息(工作记忆),以及灵活应对环境变化(任务切换)。执行功能障碍与不良行为结果以及神经发育性和外化障碍相关的临床表现之间存在关联。事实上,有研究认为,执行功能障碍可能构成一个跨诊断的标志,适用于多种精神健康问题的诊断。识别潜在临床相关标志物的神经基础可能有助于在多个层面上建立诊断边界。然而,由于研究方法缺乏系统性,导致我们难以全面地理解执行功能的表现。在这里,本研究通过使用多种执行功能任务、提取潜在的执行功能因素,并将其与大脑结构特征(即皮层厚度)进行关联分析,从而克服先前研究所存在的局限性。本研究重点关注中后期童年阶段,因为这个阶段大脑和行为的可塑性较强。尽管青春期通常受到更多关注,但中后期童年可能在心理健康预防方面更为重要,因为它是许多心理问题出现之前的关键时期,早期的干预可能在这个阶段更为有效。

研究表明,执行功能(EFs)早在婴儿期就出现,并持续发展至成年早期。总的来说,EFs在儿童期中期迅速成熟,尽管三种执行功能之间的发育进程速度存在差异。同样,支持执行功能的神经结构也经历了较长时间的发育过程。在成人的执行功能中,已经一致地发现了一组核心的大脑区域,这些区域构成了所谓的额顶网络,包括背外侧前额叶皮层(DLPFC)、双侧额下回(IFG)、下顶叶(IPL)、上顶叶(SPL)和前运动区;此外,还有所谓的扣带-岛叶网络,包括背侧前扣带皮层(ACC)和双侧前岛叶。对儿童进行的全面功能性脑成像研究,以及关于儿童执行功能任务中脑激活元分析研究报告的脑区,基本与成人研究中发现的脑区一致,包括双侧前额叶皮层、双侧岛叶和左右顶叶区域。

在执行功能及其发展的研究中,一个关键问题是,执行功能的各个方面是否是可以分离的独立构念,还是它们实际上是同一基本过程的不同表现形式。发展研究表明,儿童时期的执行功能具有统一结构,并随着发展逐渐分化为不同的子过程,这一观点也被称为多样性与统一性辩论。神经影像学研究为是否将执行功能视为统一或分化的构念提供了支持。执行功能是否由独立的或共同的过程支撑,对旨在改善执行功能的干预设计也具有重要意义,因为有研究认为,针对共同过程的干预可能带来更广泛的益处,特别是在大脑区域逐渐专门化的发育过程中。迄今为止,已有大量研究探讨了同一人群中不同执行功能的功能性和结构性基础,发现支持执行功能的神经基础既有区别又有重叠之处。具体来说,在成年人中,双侧额顶网络(FPN)支持所有三种执行功能,并被认为支持所有执行功能共享的过程。最近一项关于儿童和青少年执行功能fMRI研究的元分析发现,三种执行功能之间共享的一组大脑区域,包括左右侧辅助运动区、左右侧中扣带回、以及左右侧的额上回和额中回。此外,许多研究报告了皮层下区域以及额叶和顶叶皮层区域与每种执行功能特有的过程相关联(例如,额下回独特地支持反应抑制)。然而,在发展阶段群体中,尤其是在儿童中,大脑与执行功能之间的独特关联并不强烈。总体而言,使用适当的设计在发展阶段群体中探讨这一问题的研究非常少。

本文通过研究皮层厚度来探讨EF过程中共享和独特的神经基础。虽然大脑的功能与结构之间存在明显的相关性,但由于皮层厚度具有更高的重测信度,因此它可能更适合用来研究个体差异的神经基础。本研究首先考察皮层厚度与每个EF之间的关联,然后研究它们之间的重叠部分。基于EF与前额叶和顶叶脑区在多种测量方式中的显著关联,本研究预期能够通过当前的分析方法再现这些结果。鉴于年龄增长伴随功能专门化增强的理论框架,以及先前元分析中未发现特定EF与功能激活之间独特关联的情况,本研究预测皮层厚度与不同执行功能之间在前额叶和顶叶脑区的关联会有显著重叠,这表明存在一组统一的大脑区域共同支持EFs。

材料与方法

参与者

本研究共招募了262名来自英国大伦敦地区学校的正常发育儿童(年龄范围为6.03-13.31岁;平均年龄为8.97岁,女性占比52.84%)。研究得到了伦敦大学学院(UCL)伦理委员会的批准(编号:12271/001)。在向父母和孩子提供研究内容的说明后,获得了他们的书面知情同意。社会经济地位(SES)根据父母双方的就业和教育情况进行评估,并根据既往学习障碍病史排除被试。此外,在扫描过程中遵循了安全协议,排除了一些不符合条件的儿童(例如体内有金属物品或患有幽闭恐惧症的儿童)。141名(年龄范围为6.06-13.3岁,平均年龄为9.12岁,女性占比55.3%)儿童完成了结构像扫描。最终样本中,SES分数呈正偏态(M=1.64;1-5分,1分为最高分)。该样本的种族构成如下:亚裔占12.59%;黑人占3.70%;多种族群体占17.78%;白人占64.44%;其他种族占1.48%。

执行功能任务

本研究共收集了9项执行功能任务的数据,每项任务侧重于评估不同的执行功能(即抑制控制、工作记忆和任务切换)。对于所有任务,参与者在进行正式测试之前需要先练习一些试次,并且需要在练习中达到一定的准确性,才能进入正式实验。为了确保参与者理解每项任务的规则,还设置了理解性问题。如果参与者在任何问题上回答错误,规则将被重复解释说明。如果参与者在重复解释后仍然没有理解任务的要求,实验者则对此进行记录。所有参与者都成功理解了这些问题,因此没有人被排除在分析之外。

(1)抑制任务

停止信号反应时间任务(SSRT)

通过一种适合儿童的SSRT任务版本来测量反应抑制(图1)。在进行正式实验(80个试次)之前,参与者先进行10个练习试次。每个试次以1250ms的十字注视点开始。在任务过程中,要求参与者在屏幕左侧看到“go”信号(即蜜罐)时按“左”箭头键,在屏幕右侧看到信号时按“下”箭头键。在25%的试次中(即“停止”试次),蜜罐后会呈现一张蜜蜂的图片,这是“停止”信号。停止信号延迟(SSD)从200ms开始,在成功完成“停止”试次后,延迟减少50ms,若未能成功完成“停止”试次,则延迟增加50ms。采用积分法计算平均SSRT,作为抑制指标。

图1.停止信号反应时间任务(SSRT)。

侧抑制任务(Flanker)

参与者完成了一个儿童友好型的侧抑制任务版本(图2)。屏幕上展示了一排鱼,参与者需要集中注意力在屏幕中央的那条鱼(名为Chloe)。当鱼面朝左时,需要按左键;当鱼面朝右时,需要按下键。要求参与者忽略其他鱼游向的方向,只需要对Chloe的方向做出反应。在一致性试次中,所有的鱼都面朝同一个方向。在不一致性试次中,周围的鱼面朝与Chloe相反的方向。鱼的呈现时间为700ms,然后消失。参与者从刺激呈现开始,最多有2500ms的时间来做出反应。该任务共包含20个一致试次和20个不一致试次。本研究计算了不一致试次与一致试次之间在反应时和错误率上的差异。

图2.侧抑制任务。

Stroop任务

图3展示了本研究所使用的Stroop任务。该任务被引申为“农场动物”游戏,要求参与者将动物与其栖息地进行配对(例如,狗与狗舍)。在任务中,参与者同时接收到动物声音的听觉提示和动物的视觉刺激。关键是,参与者需要根据听到的动物声音来匹配动物与栖息地,而无需关注屏幕上呈现的动物图像。每个试次持续10000ms,参与者需要在此时间段内做出反应。听觉刺激持续600ms,视觉刺激则持续到参与者做出反应为止(最长为1000ms)。每个试次之间会呈现一个十字空屏,持续10000ms(ITI)。在一致性试次中,听觉和视觉提示一致(例如,屏幕上呈现青蛙,并播放“呱呱”声音)。在不一致性试次中,听觉和视觉提示不一致(例如,屏幕上呈现狗,并播放“呱呱”声音)。该任务共包含72个试次,其中36个是一致试次,36个是不一致试次。本研究计算了不一致试次与一致试次之间在反应时和错误率上的差异。

图3.Stroop任务。

(2)工作记忆任务

N-back任务

本研究使用1-back和2-back任务来测量工作记忆(图4)。为了让任务更适合儿童,任务被改编并以“恐龙甜甜圈”游戏的形式呈现,参与者被告知恐龙们正在排队等着吃甜甜圈。对于1-back任务,参与者需要阻止那些连续两次试图吃甜甜圈的恐龙,如果它们连续出现,则按下空格键来阻止它们。对于2-back任务,参与者被告知恐龙变得更加狡猾了,如果同样的恐龙在前两轮已经出现,那么他们应该按下空格键。每个刺激呈现500ms,随后是1500ms的刺激间隔(ISI)。参与者必须在下一个刺激呈现之前做出反应。该任务共包含80个试次,其中40个试次为1-back任务,40个试次为2-back任务。根据命中率和误报率,计算1-back和2-back任务的d'值。

图4.1-back和2-back任务。

Corsi方块点击任务

使用Corsi方块点击任务评估工作记忆广度(图5),该任务用于测量视空间工作记忆广度,广度值越高表示工作记忆容量越大。该任务包括“青蛙Freddy”在九个可能的睡莲位置之间跳跃。参与者通过按顺序点击睡莲,跟随青蛙的跳跃。每个试次开始前,会有从三倒计时到一的提示,提醒参与者试次即将开始。然后,每次青蛙跳跃的刺激会呈现600ms。ISI固定为600ms。参与者首先完成了三个带有反馈的练习试次,接着完成14个正式试次。最初,参与者需要记住并点击两个睡莲。该任务采用自适应阶梯设计,工作记忆负荷(即需要记住的睡莲数量)会在参与者连续两次正确回答后增加1。所达到的最大工作记忆负荷值作为工作记忆广度的衡量标准。

图5.Corsi方块点击任务。

(3)切换任务

认知灵活性任务

使用适合儿童的认知灵活性任务评估参与者在不同维度之间切换规则的能力(使用声音提示:“动物”或“大小”),如图6所示。如果播放“动物”的声音提示,参与者需要判断动物是猫还是狗。如果播放“大小”的声音提示,参与者需要判断动物是大还是小。参与者有10s钟的时间在试次结束前作出反应,在此期间,刺激会一直显示在屏幕上——任何在刺激出现后200ms内作出的反应都不予记录。试次间的间隔(ITI)是随机的,范围为1000-1200ms。保持试次之前会有一个相同规则的试次(例如,连续两次需要判断动物的类型)。在切换试次期间,当前试次之前会有一个不同维度的试次(即,参与者需要首先判断动物的大小,然后再判断动物的类型)。在完成一个练习block后,参与者完成了40个正式试次(包括28个保持试次和12个切换试次)。此外,参与者完成了20个单一维度的试次(这些试次分为两个block)和40个混合维度的试次(分为一个block)。最后,本研究计算了切换试次和保持试次之间的反应时间差异。

图6.认知灵活性任务。

Flanker切换任务

参与者完成了一个儿童友好型的Flanker切换任务版本(图7)。屏幕上会呈现一排鱼,儿童被告知所有的鱼都朝着相同的方向游动。鱼的颜色有两种:橙色和紫色的鱼。当看到橙色的鱼时,他们需要判断鱼游动的方向(即当鱼朝左时,按左键;当鱼朝右时,按下键)。当看到紫色的鱼时,他们需要判断鱼游动的相反方向(即当鱼朝右时,按左键;当鱼朝左时,按下键)。鱼呈现的时间为700ms,之后消失。参与者从刺激呈现开始,最多有2500ms的时间来进行反应。保持试次是指前一个试次的规则与当前试次相同的试次(即紫色试次后接紫色试次,橙色试次后接橙色试次)。切换试次是指规则发生变化的试次(即橙色试次后接紫色试次,紫色试次后接橙色试次)。该任务包含28个保持试次和12个切换试次。最后,计算切换试次和保持试次之间的反应时和错误率差异。

图7.Flanker切换任务。

(4)复杂EF任务

AX-CPT任务

使用AX-CPT范式的儿童友好型版本来测量反应性控制和前瞻性控制。该任务被引申为“水果岛”游戏。“A”或“B”提示(即狗或猫)在屏幕中央呈现500ms,接着是750ms的刺激间隔,然后呈现一个“X”或“Y”探测符号(橙子或苹果),在此期间参与者需要做出反应。要求参与者在“A”之后出现“X”时按左键(即AX试次),对于所有其他提示-探测符号组合(即AY、BX、BY试次),则按向下箭头键。重要的是,他们被指示只能在探测符号出现后做出反应,如果在探测符号出现前做出反应,则会收到警告。参与者最多有6000ms的时间进行反应。做出反应后会有一个1500ms的试次间隔。试次类型的比例基于以往的研究,其中40%的试次为AX试次,而所有其他试次(即AY、BX、BY试次)均为20%。试次是随机呈现的。正式实验开始前有10个练习试次,并且提供反馈,随后是60个主试次。

图8.AX-CPT任务。

脑结构数据采集

使用西门子3.0T Prisma扫描仪采集高分辨率的T1加权图像,该扫描仪位于Birkbeck-UCL神经影像中心(BUCNI),并配备有32通道头部线圈。图像通过tfl3d1_16ns序列采集,翻转角度为9°,回波时间为0.00298,重复时间为2.3。共采集了208个层,体素大小为1×1×1mm3,采集矩阵为256×256。为了限制头部运动,要求儿童尽量保持头部静止,并在头部与头部线圈之间放置泡沫垫,以确保头部在线圈中固定牢固。视觉刺激投影到磁共振机舱内的屏幕上,参与者可以通过附在头线圈上的镜子观看。在结构扫描期间,参与者观看无声的动画片。

统计分析

执行功能因素

在分析行为执行功能的数据时,通过剔除那些偏离均值超过两个标准差的数据点来排除异常值。使用Rstudio中的lavaan进行验证性因子分析(CFA),以构建执行功能(EF)的潜在因子。采用FIML方法处理数据集中的缺失数据。对多个模型进行拟合,包括单因子模型和双因子模型,但大多数模型未能收敛,且部分模型出现了负方差,表明模型设定存在问题。只有两个模型收敛:一个是包含所有任务的单一因子模型,另一个是包含抑制、切换和记忆三个子因素的模型。模型拟合之间没有显著差异(p=0.638)。由于执行功能的单一潜在变量可以通过多个因子来衡量,单个任务的载荷较低,因此本研究选择了包含执行功能三个子因子的模型进行进一步分析。该模型能够很好地拟合本研究数据(CFI/TFI>0.95;RMSEA<0.05)。对于每个个体,从拟合模型中提取了执行功能能力值以供进一步分析。其中,抑制能力、切换能力和工作记忆能力的值越大,说明执行功能越强。

皮层厚度

使用dcm2niix将Dicom文件转换为Nifti格式后,利用FreeSurfer(v6.0.0;http://surfer.nmr.mgh.harvard.edu)对结构MRI图像进行处理。所有扫描图像均进行了质量检查,必要时在FreeSurfer中手动校正分割。如果扫描图像质量不符合要求(N=18;由于运动或分割不佳),则被排除在最终分析之外。基于此,最终有123名参与者的数据被纳入分析。在预处理之后,将每个被试的脑沟和脑回特征对齐。这个过程可以准确地匹配各被试的皮层厚度测量,同时最小化度量失真。为了减少测量噪声并保持解剖定位能力,本研究应用了一个10mm的高斯平滑核。皮层厚度数据使用Matlab的SurfStat工具箱(https://www.math.mcgill.ca/keith/surfstat)进行分析。使用线性回归模型评估年龄和执行功能因素对每个顶点皮层厚度的影响。基于表面分析的结果使用随机场理论控制多重比较。显著性阈值设置为p<0.05。使用Desikan-Killiany大脑图谱来标注任何观察到的显著皮层厚度相关性。

结果

与年龄的相关性

所有三个执行功能因子均与年龄呈正相关(r>0.42,p<0.001;见表1)。具体来说,在本研究中,随着年龄的增加,参与者的执行功能能力有所提升。

表1.年龄与执行功能能力的相关性。

皮层厚度与年龄

多个脑区的皮层厚度随着年龄的增长而变薄,其中包括位于双侧颞叶和右侧额叶的团簇(图9)。

图9.在双侧颞叶和右侧额叶的11个簇中,皮层厚度随年龄的增长而显著变薄。

抑制

没有与抑制相关的显著团簇。

工作记忆

工作记忆与右侧额叶一个团簇的皮层厚度呈正相关(图10a)。在控制年龄因素后,这种关联仍然显著。此外,工作记忆还与左侧颞叶一个团簇的皮层厚度呈正相关(图10b)。

图10.工作记忆与皮层厚度的关系。

任务切换

任务切换与三个团簇的皮层厚度呈正相关。具体来说,这些区域包括双侧额叶、左侧和右侧中央前回,以及右侧额上回(图11a)。在控制年龄因素后,切换能力与11个团簇的皮层厚度呈正相关(图11b)。

图11.任务切换与皮层厚度的关系。

EF能力之间的重叠

本研究可视化了皮层厚度与工作记忆和任务切换能力之间关联的重叠区域。工作记忆和任务切换都与右侧额上区、右侧中央前区、右尾侧额中区,以及左侧颞下区和颞中区的皮层厚度相关(图12)。

图12.工作记忆和任务切换之间存在显著重叠的脑区。

结论

长期以来,关于执行功能(EF)及其神经基础的研究较为分散。本研究通过多任务测量方法,探讨了执行功能过程与大脑结构之间的关系。研究对象为141名6-13岁儿童,采用了9项实验任务。结果显示,额叶和颞叶区域的皮层厚度与年龄相关,即皮层厚度随着年龄的增长而逐渐变薄。工作记忆与右侧额叶和左侧颞叶的皮层厚度呈正相关,而任务切换与多个脑区的皮层厚度相关,包括双侧额叶、左右中央前回,以及右侧额上回。研究未发现抑制能力与皮层厚度之间的显著关联,这表明抑制功能并非与任何特定的神经基础独立相关。此前被认为与抑制功能相关的神经活动,可能实际反映的是任务特定的认知过程或其他执行功能(如工作记忆、认知灵活性等),而非抑制本身。总的来说,本研究揭示了执行功能的神经基础,强调了不同执行功能之间的神经共享机制,并指出了执行功能在儿童期的统一性与多样性。

参考文献:Yongjing Li, Keertana Ganesan, Claire R. Smid, Abigail Thompson, Roser Cañigueral, Jessica Royer, Boris Bernhardt and Nikolaus Steinbeis, Structural brain basis of latent factors of executive functions in childhood., Developmental Cognitive Neuroscience, (2024) doi:https://doi.org/10.1016/j.dcn.2024.101504

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值