干货 | 竞品分析到底怎么做

​看过鸟姐分享的前面两篇文章的童鞋,凡是认认真真读过的,鸟姐相信大家基本已经了解产品经理的职责与从0-1的全流程,今天鸟姐要分享的是竞品分析到底怎么做。
首先,什么是竞品?从字面意思上理解就是竞争的产品。竞品其实分为两种直接竞品与间接竞品。直接竞品是指产品的商业模式、用户客群、产品的定位都是一致的。比如旅游行业:携程、飞猪、驴妈妈等就是直接的竞争对手。间接竞品是指客群高度相似,功能层面需求形成互补,但是不会造成直接的利益关系,比如全民K歌、网易云音乐。
了解竞品后,接下来讲述一下竞品分析的概念。竞品分析主要从客观与主观两方面着手。客观是从市场、商业等维度去挖掘分析的点。主观就是模拟竞品流程后去挖掘不同的点进行分析,评估下自己的产品优势与劣势。很多童鞋肯定也有疑问为啥我们要做竞品分析呢,其实从一定意义上讲分析竞争对手的产品可以从中挖掘新的点,简单点说就是哪些是它有的我没有的,我们的产品是不是要加上那块的东西。了解竞品的每一步操作,可以从产品整体的框架、交互设计或者是视觉方面,哪些值得我们去借鉴的。
竞品分析我们也需要很庞大的数据去做支撑,我们可以通过一些网站做些查询,比如阿里指数、天眼查、企查查、艾瑞咨询等网站更好的去了解我们的竞争对手。
竞品分析主要通过哪些维度?市场现况、竞品背景、目标客群分析、竞品数据、产品分析、盈利模式、运营策略。
市场现况主要是针对整个行业的全局以及前景,可发展的空间进行分析。简单的说就是行情怎么样,目前有多少家企业在干这个行业、根据我们的产品定位目前市场上存在哪些直接竞品、哪些间接竞品。竞争对手发展如何。
竞品背景主要是针对竞品公司的信息(包括创始人与核心团队的背景)、规模、成立时间、融资情况、服务理念、优势与劣势。这一块可以通过企查查或者天眼查等网站进行查询核实。
目标客群分析主要是针对竞品的目前客户,结合自己的客群分析是否存在差异。了解竞品当前目标客群的数量以及痛点,了解竞品可以解决用户哪些问题,目前遇到哪些问题,竞品是如何进行提高粘性。
竞品数据主要是针对竞品目前所占的市场份额以及分析竞品的注册用户、活跃用户、增长率(日增、月增等信息)、留存/转化率、消费率(用户消费信息),这一阶段我们可以通过酷传、阿里指数、百度指数等网站进行查询。
产品分析主要是从三个维度进行分析:功能、交互、视觉。功能分析主要去了解竞品为何需要该功能,该功能的目的是为了什么,促进用户数还是增加消费。交互分析是为了解竞品与我们自己的产品哪一种交互模式更符合用户的操作行为习惯,取其精华去其糟粕。视觉分析是分析竞品的整个布局与整体的风格。
盈利模式主要是分析竞品是靠什么挣钱的,是靠会员充值?卖广告位盈利?售卖挣差价等方式。
运营策略主要分析竞品运营方式、营销策略、获客渠道等。这些运营策略获取信息可以通过梅花网、竞品官网信息、阿里指数、百度指数等。
竞品分析我们也可以采用SWOT分析,何为SWOT?S(strengths)优势、W(weaknesses)劣势、O(opportunities)机会、T(threats)挑战。
在这里插入图片描述
鸟姐接下来给大家讲述一下做竞品分析的时候需要注意的点:

  1. 竞品分析要带有目的性的去做,不能盲目的按照一定的步骤去执行。
  2. 竞品分析不是说做了第一次过后,接下来就再也不看竞品了,不是这样的,因为你的竞争对手不可能发了一个版本后,后续再也不发版本了,我们需要隔一段时间去观察下竞品的变化。
  3. 竞品分析需要有数据的支撑。
    竞品分析后,我们需要撰写竞品分档,竞品文档的大体结构,鸟姐进行了梳理,如下图。希望对各位刚入行的小白们有所帮助。
    在这里插入图片描述
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值