05 不定积分

不定积分

不定积分的性质和概念

原函数: F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)

不定积分: ∫ f ( x ) d x = F ( x ) + C \int f(x)dx= F(x)+C f(x)dx=F(x)+C

原函数存在定理

定理1

f ( x ) f(x) f(x)在区间 I I I上连续,则 f ( x ) f(x) f(x)在区间 I I I上一定存在原函数。

定理2

f ( x ) f(x) f(x)在区间 I I I上有第一类间断点,则 f ( x ) f(x) f(x)在区间 I I I上没有原函数。有第二类间断点,可能

有原函数。

【注1】什么叫原函数,它所有点上有导数,导数要等于 f ( x ) f(x) f(x)

【注2】连续一定存在原函数,存在原函数不一定连续。

lim ⁡ x → 0 h ( x ) 不 存 在 ⇒ h ( x ) 在 x = 0 不 连 续 \lim_{x \to 0}h(x)不存在 \Rightarrow h(x)在x=0不连续 limx0h(x)h(x)x=0

不定积分的性质

∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x ± ∫ g ( x ) d x ∫ k f ( x ) d x = k ∫ f ( x ) d x \int [f(x)+g(x)]dx = \int f(x)dx \pm \int g(x)dx \\[2ex] \int kf(x)dx = k \int f(x)dx [f(x)+g(x)]dx=f(x)dx±g(x)dxkf(x)dx=kf(x)dx

公式

在这里插入图片描述

补充:

∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int \tan x dx= -\ln|\cos x|+C tanxdx=lncosx+C
∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot x dx = \ln|\sin x|+C cotxdx=lnsinx+C

三种主要积分法

1. 第一类换元法(凑微分法)

 若  ∫ f ( u ) d u = F ( u ) + C  则  ∫ f [ φ ( x ) ] φ ′ ( x ) d x = ∫ f [ φ ( x ) ] d φ ( x ) = F [ φ ( x ) ] + C \begin{array}{l} \text { 若 } \int f({u}) \mathrm{d} {u}={F}({u})+{C} \\[2ex] \text { 则 } \int f[\varphi({x})] \varphi^{\prime}({x}) \mathrm{d} {x}=\int f[\varphi({x})] \mathrm{d} \varphi({x})=F[\varphi({x})]+{C} \end{array}   f(u)du=F(u)+C  f[φ(x)]φ(x)dx=f[φ(x)]dφ(x)=F[φ(x)]+C

【注】常见凑微分法
在这里插入图片描述

2. 第二类换元法

x = φ ( t ) x = \varphi (t) x=φ(t)是单调的、可导的函数,并且$ \varphi’(t) \neq 0$,又

∫ f [ φ ( t ) ] φ ′ ( t ) d t = F ( t ) + C  则  ∫ f ( x ) d x = ∫ f [ φ ( t ) ] φ ′ ( t ) d t = F ( t ) + C = F [ φ − 1 ( x ) ] + C \begin{array}{l} \int f[\varphi(t)] \varphi^{\prime}(t) \mathrm{d} t=F(t)+C \\[2ex] \text { 则 } \int f(x) \mathrm{d} x=\int f[\varphi(t)] \varphi^{\prime}(t) \mathrm{d} t=F(t)+C=F\left[\varphi^{-1}(x)\right]+C \end{array} f[φ(t)]φ(t)dt=F(t)+C  f(x)dx=f[φ(t)]φ(t)dt=F(t)+C=F[φ1(x)]+C

iShot2020-09-24下午09.00.27

a 2 − x 2 , x = a sin ⁡ t ( a cos ⁡ t ) \sqrt{a^2 - x^2}, x = a \sin t(a \cos t) a2x2 ,x=asint(acost)

a 2 + x 2 , x = a tan ⁡ t \sqrt{a^2 + x^2}, x = a \tan t a2+x2 ,x=atant

x 2 − a 2 , x = a sec ⁡ t \sqrt{x^2 - a^2}, x = a \sec t x2a2 ,x=asect

3. 分部积分法

∫ u d v = u v − ∫ v d u \int u dv = uv - \int vdu udv=uvvdu

【注1】适用两类不同函数相乘
在这里插入图片描述

【注2】积不出的积分

∫ e x 2 d x \int e^{x^2}dx ex2dx

∫ sin ⁡ x x d x \int {\sin x \over x}dx xsinxdx

∫ cos ⁡ x x d x \int {\cos x \over x}dx xcosxdx

积不出并不代表没有原函数,是它的原函数不是初等函数,无法用初等函数来表示。

三类常见可积函数积分

1. 有理函数积分 ∫ R ( x ) d x \int R(x)dx R(x)dx

(1)一般方法(部分分式法)

(2)特殊方法(加项减项拆或凑微分降幂)※

iShot2020-09-24下午09.47.09

2. 三角有理式积分 ∫ R ( sin ⁡ x , cos ⁡ x ) d x \int R(\sin x, \cos x)dx R(sinx,cosx)dx

(1)一般方法(万能代换)

tan ⁡ x 2 = t \tan {x \over 2}=t tan2x=t

sin ⁡ x = 2 t 1 + t 2 , cos ⁡ x = 1 − t 2 1 + t 2 , d x = 2 1 + t 2 d t \sin x = {2t \over 1+t^2}, \cos x = {1-t^2 \over 1+t^2},dx={2 \over 1+t^2}dt sinx=1+t22t,cosx=1+t21t2,dx=1+t22dt
∫ R ( sin ⁡ x , cos ⁡ x ) d x = ∫ R ( 2 t 1 + t 2 , 1 − t 2 1 + t 2 ) ⋅ 2 1 + t 2 d t \int R(\sin x , \cos x)dx= \int R({2t \over 1+t^2},{1-t^2 \over 1+t^2})·{2 \over 1+t^2} dt R(sinx,cosx)dx=R(1+t22t,1+t21t2)1+t22dt

【注】万能代换的适用原则,当三角函数幂次是一次时用万能代换比较简单。

iShot2020-09-24下午10.04.44

【注】 u = cos ⁡ x u = \cos x u=cosx的意思是:适合凑 d cos ⁡ x d\cos x dcosx。下同。

3. 简单无理函数积分 ∫ R ( x , a x + b c x + d ) d x \int R(x, \sqrt{{ax +b \over cx+d}})dx R(x,cx+dax+b )dx

a x + b c x + d = t \sqrt{{ax +b \over cx+d}}=t cx+dax+b =t

注意点

  1. 遇到根式积分,直接将根式变量代换。

知识点

  1. 立方和公式: a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3 = (a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)

    立方差公式: a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值