支持生成式 AI:聊天与文档检索的结合

生成式 AI 已成为现代应用的重要组成部分,从实时聊天到文档检索,再到智能问答系统,其核心是能够理解上下文并生成有用的回答。在生成式 AI中,聊天会话内存(Chat Conversation Memory)检索增强生成(RAG, Retrieval Augmented Generation) 是两个关键功能,分别解决了上下文管理和大规模文档检索问题。

本文将介绍 Spring AI 如何支持这两个功能,并通过实际应用场景展示其强大之处。


1. 聊天会话内存(Chat Conversation Memory)

1.1 什么是聊天会话内存?

聊天会话内存是生成式 AI 在多轮对话中保持上下文的一种机制,它能够记住用户在对话中的输入和生成的响应,并在后续对话中使用这些上下文信息。这种机制能够显著提升聊天的连续性和智能性。

1.2 Spring AI 如何支持聊天会话内存

在 Spring AI 中,聊天会话内存通过以下方式实现:

  1. 内存存储:记录会话的历史消息(用户输入和 AI 响应)。
  2. 上下文注入:在生成新的响应时,将历史对话作为上下文提供给模型。
  3. 灵活配置:支持多种存储方式,如内存、本地文件或数据库。
核心代码示例
import org.springframework.stereotype.Component;

import java.util.ArrayList;
import java.util.List;

@Component
public class ChatConversationMemory {

    private final List<ChatMessage> conversation;

    public ChatConversationMemory() {
        this.conversation = new ArrayList<>();
    }

    // 添加用户或 AI 消息
    public void addMessage(String role, String content) {
        conversation.add(new ChatMessage(role, content));
    }

    // 获取完整的会话历史
    public List<ChatMessage> getConversation() {
        return new ArrayList<>(conversation);
    }

    // 清空会话历史
    public void clearConversation() {
        conversation.clear();
    }

    // 消息对象
    public static class ChatMessage {
        private String role; // "user" or "assistant"
        private String content;

        public ChatMessage(String role, String content) {
            this.role = role;
            this.content = content;
        }

        public String getRole() {
            return role;
        }

        public String getContent() {
            return content;
        }
    }
}

2. 检索增强生成(RAG, Retrieval Augmented Generation)

2.1 什么是 RAG?

RAG 是一种结合信息检索和生成式 AI 的技术,用于处理大规模知识库的问答任务。其核心是:

  1. 检索:从外部知识库中提取与用户问题相关的文档或片段。
  2. 生成:基于检索到的文档和用户输入生成回答。

RAG 的主要优点是能够结合外部知识库扩展模型的知识范围,从而提高生成回答的准确性。

2.2 Spring AI 如何支持 RAG

Spring AI 提供了集成向量数据库(如 Milvus 和 Chroma)和生成式模型的能力,支持以下功能:

  • 文档向量化:将文档转换为向量,存储到向量数据库。
  • 向量检索:根据用户输入在向量数据库中检索相关文档。
  • 生成回答:将检索到的文档作为上下文,交给生成式模型生成回答。
核心代码示例
import org.springframework.stereotype.Component;
import java.util.List;

@Component
public class RAGService {

    private final VectorDatabase vectorDatabase; // 向量数据库接口
    private final ChatGPTService chatGPTService;

    public RAGService(VectorDatabase vectorDatabase, ChatGPTService chatGPTService) {
        this.vectorDatabase = vectorDatabase;
        this.chatGPTService = chatGPTService;
    }

    // RAG 工作流
    public String answerWithRAG(String question) {
        // 步骤 1: 检索相关文档
        List<String> relevantDocs = vectorDatabase.searchSimilarDocuments(question);

        // 步骤 2: 构造生成上下文
        String context = String.join("\n", relevantDocs);

        // 步骤 3: 使用生成模型生成回答
        String prompt = "以下是相关文档:\n" + context + "\n用户问题:" + question + "\n请基于上述文档生成回答:";
        return chatGPTService.generateResponse(prompt);
    }
}

3. 应用场景

3.1 多轮对话系统
场景描述

在智能客服中,用户可能会连续提问,而上下文信息是生成准确回答的关键。例如:

  • 用户:“我想订一张明天去北京的机票。”
  • AI:“好的,请问您需要哪个时间段的航班?”
  • 用户:“上午的。”
  • AI:“以下是明天上午飞往北京的航班…”
实现方式

通过 ChatConversationMemory 记录用户和 AI 的对话历史,并在生成每个新回答时,将上下文注入模型。


3.2 文档检索问答系统
场景描述

企业可能需要一个问答系统,让用户能够快速从文档中获取答案。例如,用户提问:

  • “请问公司假期政策是什么?”
    系统从企业手册中检索相关条款并生成回答。
实现方式

通过 RAG,将企业手册的内容向量化并存储到数据库,当用户提出问题时,检索相关条款并生成答案。


3.3 结合聊天与检索的场景
场景描述

在智能学习助手中,用户可以通过多轮对话获取相关知识,同时结合文档检索提高回答准确性。例如:

  • 用户:“请帮我解释一下分布式数据库。”
  • AI:“分布式数据库是…具体您想了解哪方面?”
  • 用户:“它的优势。”
  • AI:检索相关文档并结合上下文生成回答:“分布式数据库的主要优势包括…”

4. 技术架构图

+-----------------+         +-------------------+
| 用户输入        |         | 文档库(知识库)   |
+-----------------+         +-------------------+
        |                           |
        v                           v
+-----------------+         +-------------------+
| 聊天会话内存    |<------->| 向量数据库        |
+-----------------+         +-------------------+
        |                           |
        v                           v
+---------------------------------------------+
| 生成式模型(ChatGPT)                        |
+---------------------------------------------+
        |
        v
+-----------------+
| 最终回答        |
+-----------------+

5. Spring AI 的优势

  1. 模块化:聊天会话内存和 RAG 功能可以独立使用,也可以无缝集成。
  2. 灵活扩展:支持多种向量数据库和生成模型,能够适应不同需求。
  3. 易于配置:通过 Spring 的配置管理功能,快速实现复杂功能。
  4. 高效开发:Spring AI 提供了统一的接口和工具,减少了开发成本。

6. 总结

Spring AI 通过支持聊天会话内存和检索增强生成,为构建智能问答系统、文档检索平台和多轮对话系统提供了强大的基础。无论是需要上下文管理的聊天场景,还是需要结合知识库的问答系统,这些功能都能显著提升用户体验和系统性能。未来,结合多模态支持和更多优化机制,Spring AI 将成为开发生成式 AI 应用的强大工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值