生成式 AI 已成为现代应用的重要组成部分,从实时聊天到文档检索,再到智能问答系统,其核心是能够理解上下文并生成有用的回答。在生成式 AI中,聊天会话内存(Chat Conversation Memory) 和 检索增强生成(RAG, Retrieval Augmented Generation) 是两个关键功能,分别解决了上下文管理和大规模文档检索问题。
本文将介绍 Spring AI 如何支持这两个功能,并通过实际应用场景展示其强大之处。
1. 聊天会话内存(Chat Conversation Memory)
1.1 什么是聊天会话内存?
聊天会话内存是生成式 AI 在多轮对话中保持上下文的一种机制,它能够记住用户在对话中的输入和生成的响应,并在后续对话中使用这些上下文信息。这种机制能够显著提升聊天的连续性和智能性。
1.2 Spring AI 如何支持聊天会话内存
在 Spring AI 中,聊天会话内存通过以下方式实现:
- 内存存储:记录会话的历史消息(用户输入和 AI 响应)。
- 上下文注入:在生成新的响应时,将历史对话作为上下文提供给模型。
- 灵活配置:支持多种存储方式,如内存、本地文件或数据库。
核心代码示例
import org.springframework.stereotype.Component;
import java.util.ArrayList;
import java.util.List;
@Component
public class ChatConversationMemory {
private final List<ChatMessage> conversation;
public ChatConversationMemory() {
this.conversation = new ArrayList<>();
}
// 添加用户或 AI 消息
public void addMessage(String role, String content) {
conversation.add(new ChatMessage(role, content));
}
// 获取完整的会话历史
public List<ChatMessage> getConversation() {
return new ArrayList<>(conversation);
}
// 清空会话历史
public void clearConversation() {
conversation.clear();
}
// 消息对象
public static class ChatMessage {
private String role; // "user" or "assistant"
private String content;
public ChatMessage(String role, String content) {
this.role = role;
this.content = content;
}
public String getRole() {
return role;
}
public String getContent() {
return content;
}
}
}
2. 检索增强生成(RAG, Retrieval Augmented Generation)
2.1 什么是 RAG?
RAG 是一种结合信息检索和生成式 AI 的技术,用于处理大规模知识库的问答任务。其核心是:
- 检索:从外部知识库中提取与用户问题相关的文档或片段。
- 生成:基于检索到的文档和用户输入生成回答。
RAG 的主要优点是能够结合外部知识库扩展模型的知识范围,从而提高生成回答的准确性。
2.2 Spring AI 如何支持 RAG
Spring AI 提供了集成向量数据库(如 Milvus 和 Chroma)和生成式模型的能力,支持以下功能:
- 文档向量化:将文档转换为向量,存储到向量数据库。
- 向量检索:根据用户输入在向量数据库中检索相关文档。
- 生成回答:将检索到的文档作为上下文,交给生成式模型生成回答。
核心代码示例
import org.springframework.stereotype.Component;
import java.util.List;
@Component
public class RAGService {
private final VectorDatabase vectorDatabase; // 向量数据库接口
private final ChatGPTService chatGPTService;
public RAGService(VectorDatabase vectorDatabase, ChatGPTService chatGPTService) {
this.vectorDatabase = vectorDatabase;
this.chatGPTService = chatGPTService;
}
// RAG 工作流
public String answerWithRAG(String question) {
// 步骤 1: 检索相关文档
List<String> relevantDocs = vectorDatabase.searchSimilarDocuments(question);
// 步骤 2: 构造生成上下文
String context = String.join("\n", relevantDocs);
// 步骤 3: 使用生成模型生成回答
String prompt = "以下是相关文档:\n" + context + "\n用户问题:" + question + "\n请基于上述文档生成回答:";
return chatGPTService.generateResponse(prompt);
}
}
3. 应用场景
3.1 多轮对话系统
场景描述
在智能客服中,用户可能会连续提问,而上下文信息是生成准确回答的关键。例如:
- 用户:“我想订一张明天去北京的机票。”
- AI:“好的,请问您需要哪个时间段的航班?”
- 用户:“上午的。”
- AI:“以下是明天上午飞往北京的航班…”
实现方式
通过 ChatConversationMemory 记录用户和 AI 的对话历史,并在生成每个新回答时,将上下文注入模型。
3.2 文档检索问答系统
场景描述
企业可能需要一个问答系统,让用户能够快速从文档中获取答案。例如,用户提问:
- “请问公司假期政策是什么?”
系统从企业手册中检索相关条款并生成回答。
实现方式
通过 RAG,将企业手册的内容向量化并存储到数据库,当用户提出问题时,检索相关条款并生成答案。
3.3 结合聊天与检索的场景
场景描述
在智能学习助手中,用户可以通过多轮对话获取相关知识,同时结合文档检索提高回答准确性。例如:
- 用户:“请帮我解释一下分布式数据库。”
- AI:“分布式数据库是…具体您想了解哪方面?”
- 用户:“它的优势。”
- AI:检索相关文档并结合上下文生成回答:“分布式数据库的主要优势包括…”
4. 技术架构图
+-----------------+ +-------------------+
| 用户输入 | | 文档库(知识库) |
+-----------------+ +-------------------+
| |
v v
+-----------------+ +-------------------+
| 聊天会话内存 |<------->| 向量数据库 |
+-----------------+ +-------------------+
| |
v v
+---------------------------------------------+
| 生成式模型(ChatGPT) |
+---------------------------------------------+
|
v
+-----------------+
| 最终回答 |
+-----------------+
5. Spring AI 的优势
- 模块化:聊天会话内存和 RAG 功能可以独立使用,也可以无缝集成。
- 灵活扩展:支持多种向量数据库和生成模型,能够适应不同需求。
- 易于配置:通过 Spring 的配置管理功能,快速实现复杂功能。
- 高效开发:Spring AI 提供了统一的接口和工具,减少了开发成本。
6. 总结
Spring AI 通过支持聊天会话内存和检索增强生成,为构建智能问答系统、文档检索平台和多轮对话系统提供了强大的基础。无论是需要上下文管理的聊天场景,还是需要结合知识库的问答系统,这些功能都能显著提升用户体验和系统性能。未来,结合多模态支持和更多优化机制,Spring AI 将成为开发生成式 AI 应用的强大工具。