基于物理的渲染,通俗一点说就是根据现实环境上光是如何照到物体,然后物体如何把光的颜色反射到人的眼睛的过程,通过渲染表达出来。而游戏中基于物理的渲染就是通过数学公式建模的方式来模拟(只是模拟并非完全准确)这个过程,从而达到更接近现实世界的渲染效果,显得画面更逼真。
从上面这句话的描述得知,整个物理渲染其实就用一句话最简单的话总结就是:、
求光从某个方向照射到物体后反射出来到肉眼的光。
用更具学术性的话语说就是:
求物体的双向反射分布函数,即BRDF。
因此,要在渲染上实现上面这句话,就要求我们去解开这些问题:
1、光是什么,如何用数学来量化光照。
2、物体会对光进行怎么样的反射,如何用数学来对此进行建模。
3、求出光经过物体反射后得到的光值是多少。
基于物理渲染的数学理论(推荐)
光是什么
光是一种电磁横波,以上下震荡的方式直线传播,电磁波的覆盖范围很广,但只有很小的一部分范围内(大约400到700纳米)对人类是可见的,因此着色只需要关注这部分。眼睛对光电磁波的不同频率感应为不同的颜色。

如何量化光
要对光进行数学量化,而光传播的本质是以电磁波辐射能量进行传播的,而辐射学(Radiometry)是用来度量电磁波辐射的学科,因此可以用辐射学来量化光的传播。
辐射学的常见基本量:
| 量化值 | 符号 | 单位 | 定义 |
|---|---|---|---|
| 辐射能量 (Radiant Energy) | Q Q Q | J J J | 表面上入射的能量 |
| 辐射通量 (Radiant Flux) | Φ \Phi Φ | W W W或 J / s J/s J/s | 表面上入射能量的功率 |
| 辐照度(Irradiance) | E E E | W / m 2 W/{\bf m}^2 W/m2 | 单位面积上的能量入射功率 |
| 辐射度(Radiosity) | J J J | W / m 2 W/{\bf m}^2 W/m2 | 单位面积上的能量出射功率 |
| 辐射强度(Intensity) | I I I | W / s r 2 W/{\bf sr}^2 W/sr2 | 单位立体角的辐射通量 |
| 辐射率(Radiance) | L L L | W / ( m 2 s r ) 2 W/({\bf m}^2{\bf sr})^2 W/(m2sr)2 | 每单位面积每单位立体角的辐射通量 |
什么是立体角:

立体角其实就是2D圆的弧度角扩展到3D空间的表示,如上图中 r 2 {\bf r}^2 r2即为半径为 r {\bf r} r的球的立体角,这里辐射学用的通常是单位球。用 ω {\bf \omega} ω表示立体角,单位为 s r sr sr(stereo radian)。(也有不规则的立体角,辐射学这里关注的是在单位球上形成圆边的曲面立体角)。
各个辐射学术名的关系与特点:
1、能量
能量用焦耳( J J J)衡量,光源散射光子,每个光子具有特定的波长,对应的波长携带特定的能量。所有的基本辐射量实际上都是用不同的方法对光子进行测量。一个光子在波长为 λ \lambda λ时携带的能量:
Q = h c λ Q=\frac{hc}{\lambda} Q=λhc
c c c:光速,即 299 , 472 , 458 m / s 299,472,458{\bf m/s} 299,472,458m/s。
h h h:普朗克常量, h ≈ 6.626 × 1 0 − 34 m 2 k g / s h\approx6.626\times10^{-34}{\bf m}^2{\bf kg}/{\bf s} h≈6.626×10−34m2kg/s。
2、辐射通量:
Φ = Q t {\Phi}=\frac{Q}{t} Φ=tQ
d d d:微分表示符。
t t t:时间。
3、辐照度:
对于点光源, E E E有公式:
E = Φ 4 π r 2 E=\frac{\Phi}{4\pi r^2} E=4πr2Φ

图解:辐射通量用于测量空间上通过的能量,对于点光源,能量会随着距离的增加而递减,但总的能量保持不变。
对于平行光, E E E有公式:
E = Φ A E=\frac{\Phi}{A} E=AΦ
A A A:面积。

定义垂直入射光方向的辐照度:
E ⊥ = Φ A ⊥ E{_\bot}=\frac{\Phi}{A{_\bot}} E⊥=

本文解析了物理渲染的基本原理,从光的电磁特性出发,量化辐射学概念,深入探讨了双向反射分布函数(BRDF)的作用,以及如何通过Torrance-Sparrow模型模拟微表面效果。通过数学建模,揭示了如何计算物体表面的反射颜色,以实现游戏和视觉应用中的逼真渲染。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



