人工势场法(APF) —— Path Planning

本文探讨了人工势场法在机器人路径规划中的应用,介绍其原理及计算过程,通过仿真验证了算法的有效性,同时也指出了算法可能存在的局限性,如局部极小值问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

版权声明:本文为博主原创博文,未经允许不得转载,若要转载,请说明出处并给出博文链接

 

       维基百科说:“人工势场法(Artificial Potential Field, APF)是一种将机器人的外形视为势场中的一个点,这个势场结合了对目标的吸引力和对障碍物的排斥力。得到的轨迹作为路径输出。该方法具有计算量小、容易理解等优点。然而,它们可能陷入势场的局部极小值而无法找到路径,或者无法找到最优路径。人工势场可以被视为与静电势场类似的连续方程(将机器人视为点电荷),或者通过场的运动可以使用一组语言规则进行离散化。”

       下面找了一些人工势场法的理论与公式[1],方便理解。

既然知道了合力,将合力拆分成水平X和Y两个分量,再做三角函数,就可以获得实际应该前进的方向,再给以合适的速度,便可以顺利到达目标。

下面,借用了一下 VFH 2D simulation的障碍物来做一下仿真,也可以做个对比。

① 针对下图,还是可以看出虽然起始方向有些问题,但是最终还是绕过障碍到达了目标的。这里图一最终算出的路径覆盖为12.7,从图中看,该算法的路径平滑性有点差。当然,肯定有改进的算法会优化这个问题。

                                               

                                               

 

②针对算法的缺点,做了一个特殊的事例,可以看出,最终机器人卡死,进入局部最小值。

                                               

 

                                               

把之前的静态的最终路径图更换成了动态显示的路径图,更方便理解。

[1]  李世昌.《基于 A*与人工势场的四旋翼无人机路径规划算法研究》

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值