姿态估计(2)—— 扩展卡尔曼滤波(Extended Kalman Filter—EKF)

本文探讨了基于QEKF的四旋翼飞行器姿态估计方法,采用四阶毕卡逼近算法解决四元数微分方程,并通过仿真对比互补滤波与梯度下降法,展示了算法性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

版权声明:本文为博主原创博文,未经允许不得转载,若要转载,请说明出处并给出博文链接

 

这里主要选取了文章中的部分要点予以展示,有兴趣的可以去看下全文《基于QEKF的四旋翼飞行器姿态估计》。想要进一步了解互补滤波的可以看这里姿态估计(1)——互补滤波(Complementary filter )

                      

                     

捷联惯性导航系统中, 四元数微分方程与角速度的关系,如下式所示 
                       

文章中采用了四阶毕卡逼近算法对离散四元数差分方程进行求解

                   

                    

                          

                        

                      

最后将传感器的原始数据,以及经过QEKF算法估计出来的姿态角进行仿真,也与互补滤波和梯度下降法进行了算法性能对比。

                                                                                      

                                     

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值