浙大《概率与数理统计》第四版证明随机变量X,Y的相关系数的绝对值小于1,及一些疑问

这里的证明方法来自浙大《概率与数理统计》108页:
需证明命题:
对 任 意 两 个 随 机 变 量 X , Y , 证 明 其 相 关 系 数 的 绝 对 值 小 于 1 。 对任意两个随机变量X,Y,证明其相关系数的绝对值小于1。 X,Y1

证明思路:

  1. 先 构 造 a + b X 和 Y 的 均 方 误 差 的 期 望 E { [ Y − ( a + b X ) ] 2 } 先构造a+bX和Y的均方误差的期望E\left\{ \left[ Y-\left( a+bX\right) \right] ^{2}\right\} a+bXYE{[Y(a+bX)]2}
  2. 再 求 出 这 个 期 望 的 最 小 值 是 ( 1 − ρ X Y 2 ) D ( Y ) 再求出这个期望的最小值是\left( 1-\rho _{XY}^{2}\right) D\left( Y\right) (1ρXY2)D(Y)
  3. 因 为 均 方 误 差 是 大 于 等 于 0 的 值 , 方 差 也 是 大 于 等 于 0 的 值 , 所 以 对 于 等 式 因为均方误差是大于等于0的值,方差也是大于等于0的值,所以对于等式 00
    min ⁡ a , b E { [ Y − ( a + b X ) ] 2 } = ( 1 − ρ x y 2 ) D ( Y ) \min _{a,b}E\left\{ \left[ Y-\left( a+bX\right) \right] ^{2}\right\} =\left( 1-\rho_{xy} ^{2}\right)D\left( Y\right) a,bminE{[Y(a+bX)]2}=(1ρxy2)D(Y)
    ( 1 − ρ X Y 2 ) 是 必 须 大 于 0 的 , 所 以 ∣ ρ x y ∣ ≤ 1 \left( 1-\rho _{XY}^{2}\right) 是必须大于0的,所以\left| \rho_{xy}\right| \leq 1 (1ρXY2)0ρxy1

具体步骤
1,对于任意两个随机变量 X , Y X,Y X,Y,构造
e = E { [ Y − ( a + b x ) ] 2 } = E ( Y 2 ) + b 2 E ( X 2 ) + a 2 − 2 b E ( X Y ) + 2 a b E ( X ) − 2 a E ( Y ) (1) \begin{aligned}e&= E\left\{ \left[ Y-\left( a+bx\right) \right] ^{2}\right\}\\ &=E\left( Y^{2}\right) + b^{2}E\left( X^{2}\right) +a^{2}-2bE\left( XY\right)+2abE\left( X\right) -2aE\left( Y\right) \end{aligned} \tag{1} e=E{[Y(a+bx)]2}=E(Y2)+b2E(X2)+a22bE(XY)+2abE(X)2aE(Y)(1)
2. 可以将 e e e看作是关于 a , b a, b a,b的函数,那么,根据多元函数求极值的方法,就要分别求 e e e关于 a , b a, b a,b的偏导,并令其等于 0 0 0, 找到满足必要条件的 a , b a, b a,b的值
{ ∂ e ∂ a = 2 a + 2 b E ( X ) − 2 E ( Y ) = 0 , ∂ e ∂ b = 2 b E ( X 2 ) − 2 E ( X Y ) + 2 a E ( X ) = 0. (2) \begin{cases} \dfrac {\partial e}{\partial a}=2a+2bE\left( X\right) -2E\left( Y\right) =0,\\ \\ \dfrac {\partial e}{\partial b}=2bE\left( X^{2}\right) -2E\left( XY\right) +2aE\left( X\right) =0. \end{cases} \tag{2} ae=2a+2bE(X)2E(Y)=0,be=2bE(X2)2E(XY)+2aE(X)=0.(2)
a , b a, b a,b的二元一次方程组,得出
b 0 = C o v ( X , Y ) D ( X ) a 0 = E ( Y ) − b 0 E ( X ) = E ( X ) − E ( X ) C o v ( X , Y ) D ( X ) (3) \begin{aligned} b_{0}&=\dfrac {Cov\left( X,Y\right) }{D\left( X\right) } \\ a_0&=E\left( Y\right) -b_0E\left( X\right) =E\left( X\right) -E\left( X\right) \dfrac {Cov\left( X,Y\right) }{D\left( X\right) } \end{aligned} \tag{3} b0a0=D(X)Cov(X,Y)=E(Y)b0E(X)=E(X)E(X)D(X)Cov(X,Y)(3)
3. 将 a 0 , b 0 a_0, b_0 a0,b0代入式 ( 1 ) (1) (1)中,得到
e = E { [ Y − ( a + b x ) ] 2 } = D [ y − a 0 − b 0 X ] + [ E ( Y − a 0 − b 0 X ) ] 2 由 ( 2 ) 的 第 一 式 可 得 , E ( Y − a 0 − b 0 X ) = 0 = D ( Y − b 0 X ) = D ( Y ) + b 0 2 D ( X ) − 2 b 0 C o v ( X , Y ) = D ( Y ) + C o v 2 ( X , Y ) D ( x ) − 2 C o v 2 ( X , Y ) D ( x ) = D ( Y ) [ 1 − D ( X , Y ) D ( X ) D ( Y ) ] = ( 1 − ρ X Y 2 ) D ( Y ) \begin{aligned} e&= E\left\{ \left[ Y-\left( a+bx\right) \right] ^{2}\right\}\\ &= D\left[ y-a_0 -b_0X\right] +\left[ E\left( Y-a_0-b_0 X\right) \right] ^{2}\\ 由(2)的第一式可得,E\left( Y-a_0-b_0 X\right)=0 \\ &= D\left( Y- b_0X\right) \\ \\ &= D\left( Y\right) +b^{2}_0 D\left( X\right) -2b_0 Cov\left( X,Y\right) \\ \\ &= D\left( Y\right) +\dfrac {Cov^2\left( X,Y\right) }{D\left( x\right) }-2\dfrac {Cov^2\left( X,Y\right) }{D\left( x\right) } \\ \\ &= D\left( Y\right) \left[ 1-\dfrac {D\left( X,Y\right) }{D\left( X\right) D\left( Y\right) }\right] \\ \\ &=\left( 1-\rho_{XY}^2\right) D\left( Y\right) \end{aligned} e(2)E(Ya0b0X)=0=E{[Y(a+bx)]2}=D[ya0b0X]+[E(Ya0b0X)]2=D(Yb0X)=D(Y)+b02D(X)2b0Cov(X,Y)=D(Y)+D(x)Cov2(X,Y)2D(x)Cov2(X,Y)=D(Y)[1D(X)D(Y)D(X,Y)]=(1ρXY2)D(Y)
因为由方差的定义可知,方差始终是大于或等于0的值,而且 e e e是一个非负随机变量(有平方)的期望,所以 ( 1 − ρ X Y 2 ) \left( 1-\rho_{XY}^2\right) (1ρXY2)必定大于0,所以 X , Y X,Y X,Y的相关系数 ∣ ρ X Y ∣ ≤ 1 |\rho_{XY}| \leq 1 ρXY1

这里的证明过程没有问题,不过我有疑问的是,如果问题改为求任意随机变量X,Y的相关系数的取值范围,又该怎么做呢?因为这里的题目已经预设了证明是绝对值小于1,那么怎么证明1就是任意两个随机变量的相关系数的最大值呢?就像 a a a是一个 ( 0 , 0.5 ) (0, 0.5) (0,0.5)之间的值,现在已经证明了 a ≤ 1 a \leq 1 a1,怎么能够证明出 a ≤ 0.5 a\leq 0.5 a0.5

更新,一些关于相关系数的理解:

  1. 相关系数表达的是两个随机变量 X , Y X, Y X,Y的线性关系,不相关意味着两随机变量间没有线性关系,而不表示两随机变量独立,即是说不存在 a + b X = Y a+bX = Y a+bX=Y这种关系,可能存在 Y = X 2 Y=X^2 Y=X2时,相关系数 ρ X Y = 0 \rho_{XY}=0 ρXY=0, X , Y X,Y X,Y不相关,但是 X , Y X,Y X,Y也不独立。详见浙大概率论与梳理统计第4版108页及其后例一
  2. 疑问解答:
    怎么证明出任意随机变量的相关系数的最大值就是1的呢?
    两个思路:
  • 知乎大佬的一个回答知道,可以将随机变量看作无穷维的向量,协方差看作是向量内积,那么相关系数就是向量的夹角余弦值,自然而然,取值范围是 [ − 1 , 1 ] [-1, 1] [1,1]
  • 由书上108页的第二个定理的证明可以知道, ∣ ρ X Y ∣ = 1 |\rho_{XY}|=1 ρXY=1的充要条件是存在常数 a , b a,b a,b使得
    P { Y = a + b X } = 1 P\{ Y= a+bX \} =1 P{Y=a+bX}=1
    即是当且仅当 Y = a + b X Y=a+bX Y=a+bX这个条件存在时,满足 ∣ ρ X Y ∣ = 1 |\rho_{XY}|=1 ρXY=1这个条件,对于其他 Y = a̸ + b X Y =\not a+bX Y=a+bX的情况都是 ∣ ρ X Y ∣ < 1 |\rho_{XY}|<1 ρXY<1,所以能够得出对于任意两个随机变量的相关系数,其绝对值最大能够取到1,以及 ∣ ρ X Y ∣ ≤ 1 |\rho_{XY}|\leq1 ρXY1
  • 9
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 概率论数理统计数学中的两个重要分支,它们研究的是不确定性问题和数据分析的理论与方法。浙江大学第四版csdn是指浙江大学出版的第四版概率论数理统计教材,通过CSDN这个学习工具平台进行学习和交流。 概率论是研究随机现象的数学理论,它包括了概率随机变量、随机事件的概念和性质,以及各种随机现象的数学模型和分析方法。在实际应用中,我们经常会遇到一些不确定性的情况,概率论可以帮助我们计算和分析这些不确定性的大小和发生的可能性,为我们做出决策提供科学依据。 数理统计则是根据观测数据对总体进行推断的理论和方法。它主要研究如何通过样本数据来估计总体参数、检验总体假设、建立总体模型等。数理统计的应用非常广泛,比如通过对市场调查数据的分析来预测市场趋势,通过对临床试验数据的分析来评估一种新药的疗效等。 浙江大学第四版概率论数理统计教材在内容上应该会有一些更新和改进。而CSDN作为一个在线学习和交流的平台,能够提供丰富的学习资源和交流机会,使学生可以更便捷地获取教材相关的学习资源和与其他学习者交流心得和解决问题的经验。 总之,概率论数理统计数学中的两个重要分支,它们的研究内容涉及到不确定性问题和数据分析的理论与方法。浙江大学第四版概率论数理统计教材通过CSDN这个学习工具平台帮助学生更好地学习和交流。希望这些信息能对你有所帮助。 ### 回答2: 《概率论数理统计第四版)》是浙江大学出版社出版的一本统计学教材。该教材由田先正、田蕾、刘先林等合著,主要面向统计学专业的本科生和研究生。 这本教材的特点在于理论与实践相结合,内容涵盖了概率论数理统计的基本知识,系统地介绍了这两门学科的基本理论和方法。教材的编写严谨、内容全面,既有基础的概率论数理统计知识,也有一些拓展的内容,如随机过程与统计推断方法等。 教材的目录包括概率论基础、随机变量及其分布、多维随机变量及其分布、样本及抽样分布、参数估计、假设检验、回归分析与方差分析等章节。对于初学者来说,这本教材的逻辑清晰,步骤详细,易于理解和掌握。 此外,教材还配有大量的例题和习题,供学生进行练习和巩固知识。同时,教材还给出了一些实际数据的案例和分析,帮助学生将理论知识应用到实际问题中。 总之,《概率论数理统计第四版)》是一本权威的统计学教材,适用于浙江大学的学生以及其他对概率论数理统计感兴趣的人士。无论从理论还是实践角度来看,这本教材都具有一定的参考价值,是学习、应用概率论数理统计的良好教材。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝域小兵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值