3D数学之四元数与旋转

四元数

两种记法

[w,\boldsymbol{v}] =[w,(x,y,z)]

 

负四元数

-[w,\boldsymbol{v}]=[-w,-\boldsymbol{v}] =-[w,(x,y,z)]=[-w,(-x,-y,-z)]

 

单位四元数

[1,\boldsymbol{0}]

 

四元数的模

\left \| [w,(x,y,z)] \right \| = \sqrt{w^{2}+x^{2}+y^{2}+z^{2}}

 

四元数的共轭

[w,\boldsymbol{v}]^{*}=[w,\boldsymbol{-v}] = [w,(x,y,z)]^{*} = [w,(-x,-y,-z)]

 

四元数的逆(共轭除以模)

[w,\boldsymbol{v}]^{-1}=\frac{[w,\boldsymbol{v}]^{*}}{\left \|[w,\boldsymbol{v}] \right \|}

 

四元数的叉乘(结果为新的四元数)

[w_{1},\boldsymbol{v}_{1}][w_{2},\boldsymbol{v}_{2}]=[w_{1}w_{2}-\boldsymbol{v}_{1}\boldsymbol{v}_{1},w_{1}\boldsymbol{v}_{2}+w_{2}\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\times \boldsymbol{v}_{1}]

性质:

1. 叉乘满足结合律不满足交换律:

(\boldsymbol{ab})\boldsymbol{c} = \boldsymbol{a}(\boldsymbol{bc})

\boldsymbol{ab}\neq \boldsymbol{ba}

2. 四元数叉乘的模等于模的乘积:

\left \| \boldsymbol{q}_{1} \boldsymbol{q}_{2} \right \| = \left \| \boldsymbol{q}_{1} \right \|\left \| \boldsymbol{q}_{2} \right \|

3. 四元数叉乘的逆等于各个四元数的逆以相反顺序相乘:

(\boldsymbol{ab})^{-1} = \boldsymbol{b}^{-1}\boldsymbol{a}^{-1}

 

四元数的点乘(结果为标量)

[w_{1},\boldsymbol{v}_{1}]\cdot [w_{2},\boldsymbol{v}_{2}]=[w_{1}w_{2},\boldsymbol{v}_{1}\boldsymbol{v}_{2}] = w_{1}w_{2}+x_{1}x_{2}+y_{1}y_{2}+z_{1}z_{2}

 

四元数的差

表示a“减去”b等于d:\boldsymbol{d} = \boldsymbol{a}^{-1}\boldsymbol{b}

几何意义:从\boldsymbol{a}旋转到\boldsymbol{b}的角位移\boldsymbol{d}

 

四元数的幂

\boldsymbol{q}^{t} = exp(tlog\boldsymbol{q})

几何意义:四元数\boldsymbol{q}代表一个角位移,若要得到代表1/3这个角位移的四元数,可以这样计算:\boldsymbol{q}^{1/3}

注意:凡是涉及到指数运算的代数公式,如(a^{s})^{t} = a^{st},对四元数都不适用

 

四元数的插值(Slerp)

  • slerp(\boldsymbol{q}_{0},\boldsymbol{q}_{1},t ) = \boldsymbol{q}_{0}(\boldsymbol{q}_{0}^{-1}\boldsymbol{q}_{1})^{t}
  • slerp(\boldsymbol{q}_{0},\boldsymbol{q}_{1},t ) = \frac{\sin (1-t)w}{\sin w}\boldsymbol{q}_{0}+ \frac{\sin tw}{\sin w}\boldsymbol{q}_{1}

插值是四元数被广泛运用的理由之一。

 

 

旋转的方式

  1. 矩阵形式
  2. 欧拉角
  3. 四元数

矩阵形式

通过旋转矩阵可以将点从一个坐标系变换到另一个坐标系。

优点:

  • 可以立即进行向量的旋转。
  • 矩阵的形式被图形API所使用。
  • 多个角位移连接。
  • 矩阵的逆可以通过正交矩阵的性质容易求得。

缺点:

  • 占用更多的内存。
  • 难以使用。
  • 可能是病态的,数据存在冗余和浮点数精度误差。

欧拉旋转

基本思想:将角位移分解为绕三个互相垂直轴的三个旋转组成的序列。

任意三个轴都能作为旋转轴,不一定是笛卡尔轴,旋转顺序也是任意的。

优点:

  • 容易使用。
  • 最简洁的表达方式。
  • 任意三个数都是合法的。

缺点:

  • 给定方位的表达方式不唯一(如万向锁)。
  • 两个角度求插值困难。

四元数旋转

\boldsymbol{p}为点的四元数形式(\boldsymbol{p} = [0, (x,y,z)]),\boldsymbol{n}为旋转轴,\theta为旋转角,\boldsymbol{p}\boldsymbol{n}旋转\theta得到新的四元数{\boldsymbol{p}}',则有

{\boldsymbol{p}}' = \boldsymbol{qpq}^{-1}             其中,\boldsymbol{q }= \left [ \cos (\theta /2) , (\\sin (\theta /2)\boldsymbol{n}_{x},\\sin (\theta /2)\boldsymbol{n}_{y},\\sin (\theta /2)\boldsymbol{n}_{z}) \right]

优点:

  • 平滑插值。
  • 快速连接和角位移求逆。
  • 能和矩阵形式快速转换。
  • 仅用四个数。

缺点:

  • 比欧拉角内存占用大。
  • 存在误差。
  • 最难使用的旋转形式。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值