[轻笔记]蛙跳积分法

知乎上JimKarrey关于蛙跳积分法的介绍潜显易懂。

现简单记录如下:

在这里插入图片描述
已知:积分的起点是 t t t时刻的坐标 x ( t ) x(t) x(t) t − 1 2 δ t t-\frac{1}{2}\delta t t21δt时刻的速度 v ( t − 1 2 δ t ) v(t-\frac{1}{2}\delta t) v(t21δt) t − δ t t-\delta t tδt时刻的加速度 a ( t − δ t ) a(t-\delta t) a(tδt)

  • step1:计算出 x ( t ) x(t) x(t)处的受力,得到 t t t时刻的加速度 a ( t ) a(t) a(t),完成第一跳;
  • step2:根据 a ( t ) a(t) a(t)计算出 t + 1 2 δ t t+\frac{1}{2}\delta t t+21δt时刻的速度, v ( t + 1 2 δ t ) = v ( t − 1 2 δ t ) + a ( t ) δ t v(t+\frac{1}{2}\delta t)=v(t-\frac{1}{2}\delta t)+a(t)\delta t v(t+21δt)=v(t21δt)+a(t)δt,完成第二跳;
  • step3:根据 t + 1 2 δ t t+\frac{1}{2}\delta t t+21δt时刻的速度计算 t t t时刻的位置, x ( x + δ t ) = x ( t ) + v ( t + 1 2 δ t ) δ t x(x+\delta t)=x(t)+v(t+\frac{1}{2}\delta t)\delta t x(x+δt)=x(t)+v(t+21δt)δt,完成第三跳。

t t t时刻的速度则近似为 t − 1 2 δ t t-\frac{1}{2}\delta t t21δt t + 1 2 δ t t+\frac{1}{2}\delta t t+21δt时刻的速度的平均。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

windSeS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值