知乎上JimKarrey关于蛙跳积分法的介绍潜显易懂。
现简单记录如下:
已知:积分的起点是
t
t
t时刻的坐标
x
(
t
)
x(t)
x(t),
t
−
1
2
δ
t
t-\frac{1}{2}\delta t
t−21δt时刻的速度
v
(
t
−
1
2
δ
t
)
v(t-\frac{1}{2}\delta t)
v(t−21δt),
t
−
δ
t
t-\delta t
t−δt时刻的加速度
a
(
t
−
δ
t
)
a(t-\delta t)
a(t−δt)。
- step1:计算出 x ( t ) x(t) x(t)处的受力,得到 t t t时刻的加速度 a ( t ) a(t) a(t),完成第一跳;
- step2:根据 a ( t ) a(t) a(t)计算出 t + 1 2 δ t t+\frac{1}{2}\delta t t+21δt时刻的速度, v ( t + 1 2 δ t ) = v ( t − 1 2 δ t ) + a ( t ) δ t v(t+\frac{1}{2}\delta t)=v(t-\frac{1}{2}\delta t)+a(t)\delta t v(t+21δt)=v(t−21δt)+a(t)δt,完成第二跳;
- step3:根据 t + 1 2 δ t t+\frac{1}{2}\delta t t+21δt时刻的速度计算 t t t时刻的位置, x ( x + δ t ) = x ( t ) + v ( t + 1 2 δ t ) δ t x(x+\delta t)=x(t)+v(t+\frac{1}{2}\delta t)\delta t x(x+δt)=x(t)+v(t+21δt)δt,完成第三跳。
t t t时刻的速度则近似为 t − 1 2 δ t t-\frac{1}{2}\delta t t−21δt和 t + 1 2 δ t t+\frac{1}{2}\delta t t+21δt时刻的速度的平均。