信号与系统(16)- 系统的频域分析法:非周期信号

1. 系统对非周期信号的频谱分析方法:由周期信号到非周期信号

同之前分析由周期信号的傅里叶级数到非周期信号的傅里叶变换相似,非周期信号的频域分析法,仍然是通过将周期趋于无穷大,进而得到非周期信号。

对于某频率点 ω \omega ω,在傅里叶变换推导时, T → ∞ T\rightarrow \infty T使得复振幅趋于无穷小,进而在求解时,通过对振幅乘以周期引出了频谱密度这个概念,如下所示:

信号 f ( t ) f(t) f(t)通过复指数正交函数集展开为:
f ( t ) = ∑ n = − ∞ + ∞ [ C n ⋅ e j ( n Ω t ) ] f(t)=\sum_{n=-\infty}^{+\infty}[C_n\cdot e^{j(n\Omega t)}] f(t)=n=+[Cnej(nΩt)]
上式中系数 C n C_n Cn为:
C n = ∫ t 1 t 2 f ( t ) ⋅ ( e j n Ω t ) ∗ ∫ t 1 t 2 ( e j n Ω t ) ( e j n Ω t ) ∗ = 1 T ∫ t 1 t 2 f ( t ) e − j n Ω t d t C_n=\frac{\int_{t_1}^{t_2}f(t)\cdot (e^{j{n\Omega t}})^*}{\int_{t_1}^{t_2}(e^{j{n\Omega t}})(e^{j{n\Omega t}})^*} = \frac{1}{T}\int_{t_1}^{t_2}f(t)e^{-jn\Omega t}dt Cn=t1t2(ejnΩt)(ejnΩt)t1t2f(t)(ejnΩt)=T1t1t2f(t)ejnΩtdt
其中 Ω = 2 π T \Omega = \frac{2\pi}{T} Ω=T2π,且 f ( t ) f(t) f(t)是周期为T的函数,以上便是周期函数的傅里叶级数展开。

在周期信号的傅里叶级数展开中,由系数 C n C_n Cn关于 n n n或频率构成的图谱,称为幅度频谱,反应了构成信号 f ( t ) f(t) f(t)的各个频率分量及各个频率分量的幅度。

那对于连续非周期函数呢?什么样的幅度频谱可以反应一个非周期信号的频率组成成分呢?

为了回答这个问题,首先要对信号 f ( t ) f(t) f(t)系数 C n C_n Cn做如下变化:

  1. 将周期信号的周期T进行趋近无穷大,即 T → ∞ T\rightarrow \infty T,使之变为一个非周期信号;由之前提到的方波周期信号可知,若 T → ∞ T\rightarrow \infty T,频谱间隔将趋近无穷小,信号在各个频率点上都有信号分量,频率的取值变为连续取值。
  2. 由于 T → ∞ T\rightarrow \infty T时,系数 C n → 0 C_n\rightarrow 0 Cn0,即在每一个频率点上的频率分量大小将趋近于零。为了解决这个问题,人为的将系数 C n C_n Cn乘以T,即

C n ⋅ T ( 2 π C n Ω ) = T ⋅ ∫ t 1 t 2 f ( t ) ⋅ ( e j n Ω t ) ∗ ∫ t 1 t 2 ( e j n Ω t ) ( e j n Ω t ) ∗ = ∫ t 1 t 2 f ( t ) e − j n Ω t d t C_n\cdot T(2\pi \frac{C_n}{\Omega})=T\cdot \frac{\int_{t_1}^{t_2}f(t)\cdot (e^{j{n\Omega t}})^*}{\int_{t_1}^{t_2}(e^{j{n\Omega t}})(e^{j{n\Omega t}})^*} = \int_{t_1}^{t_2}f(t)e^{-jn\Omega t}dt CnT(2πΩCn)=Tt1t2(ejnΩt)(ejnΩt)t1t2f(t)(ejnΩt)=t1t2f(t)ejnΩtdt

由于当 T → ∞ T\rightarrow \infty T时, Ω → 0 \Omega \rightarrow 0 Ω0,且 n Ω n\Omega nΩ将变为一个连续变量,用 ω \omega ω表示,并且将 T ⋅ C n T\cdot C_n TCn F ( j ω ) F(j\omega) F(jω)表示,而由于周期T趋近于无穷,因此积分限便从 T = t 2 − t 1 T=t_2-t_1 T=t2t1变为了 [ − ∞ , + ∞ ] [-\infty,+\infty] [,+],则上式变为:
F ( j ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t d t F(j\omega) = \int_{-\infty}^{+\infty}f(t)e^{-j\omega t}dt F(jω)=+f(t)ejωtdt
上式便是著名的傅里叶变换,即频谱密度函数。

而进行频域分析时,需要使用实际的复振幅进行计算,因此需要将非周期信号的傅里叶变换 E ( j ω ) E(j\omega) E(jω)乘以 1 T \frac{1}{T} T1,得到信号分解之后的实际幅值,记为:
E ˙ ( ω ) = lim ⁡ T → ∞ 1 T E ( j ω ) \dot E(\omega) =\lim_{T\rightarrow \infty}\frac{1}{T}E(j\omega) E˙(ω)=TlimT1E(jω)
令:
T = Ω 2 π T = \frac{\Omega}{2\pi} T=2πΩ
E ˙ ( ω ) = lim ⁡ T → ∞ 1 T E ( j ω ) \dot E(\omega) =\lim_{T\rightarrow \infty}\frac{1}{T}E(j\omega) E˙(ω)=limTT1E(jω)等效于:
E ˙ ( ω ) = lim ⁡ Ω → 0 Ω 2 π E ( j ω ) \dot E(\omega) = \lim_{\Omega \rightarrow 0}\frac{\Omega}{2\pi}E(j\omega) E˙(ω)=Ω0lim2πΩE(jω)
Ω \Omega Ω是周期信号中的频率表示方法,周期趋于无穷时,频率变为 Ω → 0 \Omega \rightarrow 0 Ω0,周期信号变为非周期信号,其频率变为无穷小的频率点,记为 d ω d\omega dω

所以原式变为:
E ˙ ( ω ) = lim ⁡ Ω → 0 Ω 2 π E ( j ω ) = E ( j ω ) 2 π d ω \begin{aligned} \dot E(\omega) &= \lim_{\Omega \rightarrow 0}\frac{\Omega}{2\pi}E(j\omega) \\&=\frac{E(j\omega)}{2\pi}d\omega \end{aligned} E˙(ω)=Ω0lim2πΩE(jω)=2πE(jω)dω
所以信号 E ˙ ( ω ) \dot E(\omega) E˙(ω)在频率点 ω \omega ω的响应为:
R ˙ ( ω ) = H ( j ω ) ⋅ E ˙ ( ω ) = H ( j ω ) E ( j ω ) 2 π d ω \dot R(\omega)=H(j\omega)\cdot \dot E(\omega) = \frac{H(j\omega)E(j\omega)}{2\pi}d\omega R˙(ω)=H(jω)E˙(ω)=2πH(jω)E(jω)dω
得到了在某一点频率的响应后,将所有频率范围的各个频率点的响应叠加便可求出最后的响应,但是由于 R ˙ ( ω ) \dot R(\omega) R˙(ω)只是一个复数振幅,而叠加需要使用时间函数叠加,因此要将 R ˙ ( ω ) \dot R(\omega) R˙(ω)换为时间函数后再叠加,如下:
r ( t ) = ∑ ω = − ∞ + ∞ R ˙ ( ω ) ⋅ e j ω t = ∫ − ∞ + ∞ H ( j ω ) E ( j ω ) 2 π ⋅ e j ω t d ω = 1 2 π ∫ − ∞ + ∞ [ H ( j ω ) E ( j ω ) ] ⋅ e j ω t d ω \begin{aligned} r(t) &= \sum_{\omega = -\infty}^{+\infty}\dot R(\omega)\cdot e^{j\omega t} \\&=\int_{-\infty}^{+\infty} \frac{H(j\omega)E(j\omega)}{2\pi}\cdot e^{j\omega t}d\omega \\&=\frac{1}{2\pi}\int_{-\infty}^{+\infty} [H(j\omega)E(j\omega)]\cdot e^{j\omega t}d\omega \end{aligned} r(t)=ω=+R˙(ω)ejωt=+2πH(jω)E(jω)ejωtdω=2π1+[H(jω)E(jω)]ejωtdω
观察上式可知, r ( t ) r(t) r(t)其实是 [ H ( j ω ) E ( j ω ) ] ⋅ e j ω t [H(j\omega)E(j\omega)]\cdot e^{j\omega t} [H(jω)E(jω)]ejωt的傅里叶反变换,即:
r ( t ) = 1 2 π ∫ − ∞ + ∞ [ H ( j ω ) E ( j ω ) ] ⋅ e j ω t d ω = I . F . T . { [ H ( j ω ) E ( j ω ) ] } \begin{aligned} r(t) &=\frac{1}{2\pi}\int_{-\infty}^{+\infty} [H(j\omega)E(j\omega)]\cdot e^{j\omega t}d\omega \\&=I.F.T.\{[H(j\omega)E(j\omega)] \} \end{aligned} r(t)=2π1+[H(jω)E(jω)]ejωtdω=I.F.T.{[H(jω)E(jω)]}
而:
R ( j ω ) = F . T . { r ( t ) } = H ( j ω ) E ( j ω ) R(j\omega) = F.T.\{r(t)\} = H(j\omega)E(j\omega) R(jω)=F.T.{r(t)}=H(jω)E(jω)
所以,非周期信号的频域分析法可以总结如下

  1. 将非周期激励信号 e ( t ) e(t) e(t)进行傅里叶变换,得到其频谱 E ( j ω ) E(j\omega) E(jω)
  2. 获得系统的传输方程 H ( j ω ) H(j\omega) H(jω)
  3. 求出系统响应的频谱特性: R ( j ω ) = H ( j ω ) ⋅ E ( j ω ) R(j\omega) = H(j\omega)\cdot E(j\omega) R(jω)=H(jω)E(jω)
  4. 通过傅里叶反变换求得时间函数,对各个频率分量的响应叠加,即: r ( t ) = 1 2 π ∫ − ∞ + ∞ R ( j ω ) ⋅ e j ω t d ω r(t) =\frac{1}{2\pi}\int_{-\infty}^{+\infty} R(j\omega)\cdot e^{j\omega t}d\omega r(t)=2π1+R(jω)ejωtdω

2. 周期信号和非周期信号的频域分析方法有什么异同?

相同点:

  • 都是通过变换,将时间函数(以时间为自变量的函数)变为频域函数(以频率为自变量的函数)。两者都避免求解微分方程和卷积,但是增加了傅里叶变换(级数展开)和傅里叶反变换的计算过程

不同点:

  • 周期信号使用傅里叶级数,将信号分解为多个有限振幅的正弦信号之和,非周期信号使用傅里叶变换,将信号分解为许多个有无限小振幅的正弦信号之和。

其他:

至此系统的频域分析相关内容完毕,下部分将讨论有关连续时间系统的复频域分析的内容。如有不当之处,请批评指正,谢谢!

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
高斯白噪声和周期驱动的信号是常见的输入信号,在线性系统线性系统中都有广泛的应用。在这里,我们将研究线性系统线性系统对这两种输入信号的响应之间的差别。 首先,我们来了解一下高斯白噪声和周期驱动的信号的特点。 高斯白噪声是一种随机信号,它的功率谱密度是常数,即信号在所有频率上都有相同的功率。高斯白噪声的特点包括:随机性、平稳性和无记忆性。 周期驱动的信号是一种周期信号,它的功率谱密度是具有周期性的,即信号在某些频率上具有较高的功率,而在其他频率上功率较低。周期驱动的信号的特点包括:周期性、稳定性和有记忆性。 接下来,我们将分别研究线性系统线性系统对高斯白噪声和周期驱动的信号的响应之间的差别。 对于线性系统,由于其具有可加性、齐次性和时不变性等特点,因此其对于高斯白噪声和周期驱动的信号的响应之间的差别较小。对于高斯白噪声,线性系统的响应仍然是高斯白噪声,其信号功率和噪声功率与输入信号相同。对于周期驱动的信号,线性系统的响应也是周期信号,其功率谱密度与输入信号相同。 对于线性系统,由于其不具有可加性、齐次性和时不变性等特点,因此其对于高斯白噪声和周期驱动的信号的响应之间的差别较大。对于高斯白噪声,线性系统的响应通常是随机的,并且其信号功率和噪声功率可能会发生变化。对于周期驱动的信号线性系统的响应可能会发生一些周期性的变化,其功率谱密度也可能会发生变化。 综上所述,线性系统线性系统对高斯白噪声和周期驱动的信号的响应之间的差别较大。对于线性系统,其对于两种输入信号的响应之间的差别较小;对于线性系统,其对于两种输入信号的响应之间的差别较大。在实际应用中,我们应根据具体情况选择合适的系统来处理高斯白噪声和周期驱动的信号

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值